Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=sin^2x+3cos^2x=1-cos^2x+3cos^2x=1+2cos^2x=1+2.\left(\dfrac{1}{4}\right)^2=\dfrac{9}{8}\)
\(=\dfrac{45\cdot100\cdot0.25}{35\cdot100\cdot36}=\dfrac{45\cdot0.25}{36\cdot35}=\dfrac{11.25}{36\cdot35}=\dfrac{1}{112}\)
\(A=\frac{3}{4}.4.x^2\left(8-x^2\right)\le\frac{3}{4}\left(x^2+8-x^2\right)^2=48\)
\(A_{max}=48\) khi \(x^2=8-x^2\Rightarrow x=\pm2\)
\(B=\frac{1}{2}\left(2x-1\right)\left(6-2x\right)\le\frac{1}{8}\left(2x-1+6-2x\right)^2=\frac{25}{8}\)
\(B_{max}=\frac{25}{8}\) khi \(2x-1=6-2x\Rightarrow x=\frac{7}{4}\)
\(C=\frac{1}{\sqrt{3}}.\sqrt{3}x\left(3-\sqrt{3}x\right)\le\frac{1}{4\sqrt{3}}\left(\sqrt{3}x+3-\sqrt{3}x\right)^2=\frac{3\sqrt{3}}{4}\)
\(C_{max}=\frac{3\sqrt{3}}{4}\) khi \(\sqrt{3}x=3-\sqrt{3}x=\frac{\sqrt{3}}{2}\)
\(D=\frac{1}{20}.20x\left(32-20x\right)\le\frac{1}{80}\left(20x+32-20x\right)^2=\frac{64}{5}\)
\(D_{max}=\frac{64}{5}\) khi \(20x=32-20x\Rightarrow x=\frac{4}{5}\)
\(E=\frac{4}{5}\left(5x-5\right)\left(8-5x\right)\le\frac{1}{5}\left(5x-5+8-5x\right)=\frac{9}{5}\)
\(E_{max}=\frac{9}{5}\) khi \(5x-5=8-5x\Leftrightarrow x=\frac{13}{10}\)
Câu 1:
a: =(1+2-3-4)+(5+6-7-8)+...+(2013+2014-2015-2016)
=(-4)+(-4)+...+(-4)
=-4x504=-2016
b: \(B=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{195}{196}=\dfrac{1\cdot3\cdot2\cdot4\cdot...\cdot13\cdot15}{2\cdot3\cdot...\cdot14\cdot2\cdot3\cdot...\cdot14}=\dfrac{15}{14\cdot2}=\dfrac{15}{28}\)
\(A=\left(x-8\right)^2+2005\)
Ta có: \(\left(x-8\right)^2\ge0\forall x\in Z\)
\(\Rightarrow\left(x-8\right)^2+2005\ge2005\forall x\in Z\)
Dấu '=' xảy ra khi
\(\left(x-8\right)^2=0\Leftrightarrow x-8=0\Leftrightarrow x=8\)
Vậy: giá trị nhỏ nhất của biểu thức \(A=\left(x-8\right)^2+2005\) là 2005 khi x=8
\(B=\left(x-2\right)^2+\left(y-1\right)^2+3\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\in Z\)
\(\left(y-1\right)^2\ge0\forall y\in Z\)
Do đó: \(\left(x-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\in Z\)
\(\Rightarrow\left(x-2\right)^2+\left(y-1\right)^2+3\ge3\forall x,y\in Z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x-2\right)^2+\left(y-1\right)^2+3\) là 3 khi x=2 và y=1
\(C=\left|x-5\right|+\left(x-y\right)^2+10\)
Ta có: \(\left|x-5\right|\ge0\forall x\in Z\)
\(\left(x-y\right)^2\ge0\forall x,y\in Z\)
Do đó: \(\left|x-5\right|+\left(x-y\right)^2\ge0\forall x,y\in Z\)
⇒\(\left|x-5\right|+\left(x-y\right)^2+10\ge10\forall x,y\in Z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-5\right|=0\\\left(x-y\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-5=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\5-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=5\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(C=\left|x-5\right|+\left(x-y\right)^2+10\) là 10 khi x=5 và y=5
\(D=\left|x-2\right|+\left|y+5\right|-10\)
Ta có: \(\left|x-2\right|\ge0\forall x\in Z\)
\(\left|y+5\right|\ge0\forall y\in Z\)
Do đó: \(\left|x-2\right|+\left|y+5\right|\ge0\forall x,y\in Z\)
\(\Rightarrow\left|x-2\right|+\left|y+5\right|-10\ge-10\forall x,y\in Z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|y+5\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-5\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(D=\left|x-2\right|+\left|y+5\right|-10\) là -10 khi x=2 và y=-5
a)Vì x và y là 2 đại lượng tỉ lệ thuận nên ta có: \(y=kx\)
Khi x=-2 thì y=8 thay vào \(y=kx\) ta có:
\(8=k\cdot\left(-2\right)\Rightarrow k=8:\left(-2\right)=-4\)
Hệ số tỉ lệ của y đối với x là -4
b)\(y=-4x\left(1\right)\)
c)Khi x=6 thay vào (1) ta có:
\(y=-4\cdot6=-24\)
Vậy khi x=6 thì y=-24
a) \(1,25\times26,34+6,09\times1,25\)
\(=1,25\times\left(26,34+6,09\right)\)
\(=1,25\times32,43\)
\(=40,5375\)
b) \(15,2\times0,75+15,2\times0,5+4,8\times0,85\)
\(=\left(15,2\times0,75+15,2\times0,5\right)+4,8\times0,85\)
\(=15,2\left(0,75+0,5\right)+4,8\times0,85\)
\(=15,2\times1,25+4,8\times0,85\)
\(=19+4,08\)
\(=23,08\)