Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. với a=2,5 thì \(\sqrt{a^2}\) =\(\left|a\right|=\)\(\left|2.5\right|=2.5\)
với a=0,3 thì \(\sqrt{a^2}\) =\(\left|a\right|=\)\(\left|0,3\right|=0,3\)
với a=-0,1 thì \(\sqrt{a^2}\) =\(\left|a\right|=\)\(\left|-0,1\right|=0,1\)
Bài 4:
a: \(=\sqrt{\dfrac{10.8}{0.3}}=\sqrt{36}=6\)
b: \(=\sqrt{\dfrac{7}{175}}=\sqrt{\dfrac{1}{25}}=\dfrac{1}{5}\)
c: \(=\sqrt{\dfrac{2.84}{0.71}}=2\)
d: \(=\sqrt{\dfrac{625}{144}}=\dfrac{25}{12}\)
1
a,\(\sqrt{\dfrac{36}{121}}=\sqrt{\dfrac{6^2}{11^2}}=\dfrac{6}{11}\)
\(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}=\sqrt{\dfrac{81}{100}}=\sqrt{\dfrac{9^2}{10^2}}=\dfrac{9}{10}\)
Bài 1 bạn nhóm , trục như thường nhé :D
Bài 2. \(a.A=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
\(b.B=\sqrt{17-12\sqrt{2}}-\sqrt{9+4\sqrt{2}}=\sqrt{9-2.2\sqrt{2}.3+8}-\sqrt{8+2.2\sqrt{2}+1}=3-2\sqrt{2}-2\sqrt{2}-1=2-4\sqrt{2}\)
\(c.C=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.2.\sqrt{2}+1}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{43+30\sqrt{2}}=\sqrt{25+2.3\sqrt{2}.5+18}=5+3\sqrt{2}\)
\(d.D=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
\(D^2=24-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}=24-2\sqrt{81}=24-18=6\)
\(D=-\sqrt{6}\left(do:D< 0\right)\)
a: \(=2\cdot\dfrac{4}{3}\sqrt{3}-3\cdot\dfrac{1}{9}\sqrt{3}-6\cdot\dfrac{2}{15}\sqrt{3}\)
\(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)
b: \(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
c: \(=6\sqrt{3}-4\sqrt{3}+\dfrac{3}{5}\cdot5\sqrt{3}=2\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)
1)
a. \(\sqrt{\dfrac{25}{7}}.\sqrt{\dfrac{7}{9}}=\sqrt{\dfrac{25.7}{7.9}}=\sqrt{\dfrac{25}{9}}=\dfrac{5}{3}\)
b. \(\left(\sqrt{\dfrac{9}{2}}+\sqrt{\dfrac{1}{2}}-\sqrt{2}\right).\sqrt{2}=3+1-2=2\)
c. \(\left(\sqrt{\dfrac{8}{3}}-\sqrt{24}+\sqrt{\dfrac{50}{3}}\right).\sqrt{6}=4-12+10=2\)
d. \(\left(\sqrt{\dfrac{2}{3}}-\sqrt{\dfrac{3}{2}}\right)^2=\dfrac{2}{3}+\dfrac{3}{2}-2\sqrt{\dfrac{2}{3}.\dfrac{3}{2}}=\dfrac{1}{6}\)
2)
a. \(\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
b. \(\sqrt{8-2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}=\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}-1\)
c. \(1+\sqrt{6-2\sqrt{5}}=1+\sqrt{5-2\sqrt{5}+1}=1-\sqrt{\left(\sqrt{5}-1\right)^2}=1-\sqrt{5}+1=2-\sqrt{5}\)
d. \(\sqrt{7-2\sqrt{10}}+\sqrt{2}=\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}+\sqrt{2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{2}=\sqrt{5}-\sqrt{2}+\sqrt{2}=\sqrt{5}\)
3. \(a.A=x^2+2x+16=\left(\sqrt{2}-1\right)^2+2.\left(\sqrt{2}-1\right)+16=2-2\sqrt{2}+1+2\sqrt{2}-2+16=17\)
\(b.B=x^2+12x-14=\left(5\sqrt{2}-6\right)^2+12.\left(5\sqrt{2}-6\right)-14=50+36-60\sqrt{2}+60\sqrt{2}-72-14=0\)
Help me nha @Phùng Khánh Linh@Nhã Doanh@Liana@Yukru Cảm ơn trước nhé
\(\dfrac{\sqrt{14-6\sqrt{5}}}{\sqrt{5}-3}\)
\(=\dfrac{\sqrt{\left(3-\sqrt{5}\right)^2}}{\sqrt{5}-3}\)
\(=\dfrac{3-\sqrt{5}}{\sqrt{5}-3}\)
= - 1
\(\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{6+2\sqrt{5}}}{2}\)
\(=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}}{2}\)
\(=\dfrac{\sqrt{5}+1}{2}\)
\(\dfrac{2+\sqrt{2}}{\sqrt{1,5+\sqrt{2}}}\)
\(=\dfrac{2\sqrt{2}+2}{\sqrt{3+2\sqrt{2}}}\)
\(=\dfrac{2\left(\sqrt{2}+1\right)}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(=\dfrac{2\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
= 2
\(\dfrac{\sqrt{20}}{\sqrt{5}}+\dfrac{\sqrt{117}}{\sqrt{13}}+\dfrac{\sqrt{272}}{\sqrt{17}}+\dfrac{\sqrt{105}}{\sqrt{2\dfrac{1}{7}}}\)
\(=4+9+16+49\)
= 78
\(\dfrac{x\sqrt{x}-y\sqrt{y}}{x+\sqrt{xy}+y}\)
\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+\sqrt{xy}+y}\)
\(=\sqrt{x}-\sqrt{y}\)
\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\dfrac{\left(2+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)+\left(2-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)
\(\left[-\text{tử}-\right]=\sqrt{2}\left(2+\sqrt{3}\right)-\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)^2}+\sqrt{2}\left(2-\sqrt{3}\right)+\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)^2}\)
\(=4\sqrt{2}-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(\left[-\text{mẫu}-\right]=2-\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}-\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)
\(=2-\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{4-3}\)
\(=2-\left(\sqrt{3}-1\right)+\left(\sqrt{3}+1\right)-1\)
= 3
Ta có:
\(\dfrac{4\sqrt{2}-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{3}\)
\(=\dfrac{8-\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{3\sqrt{2}}\)
\(=\dfrac{8-\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}}{3\sqrt{2}}\)
\(=\dfrac{8-\left(\sqrt{3}+1\right)+\left(\sqrt{3}-1\right)}{3\sqrt{2}}=\dfrac{6}{3\sqrt{2}}=\sqrt{2}\)
\(\sqrt{\dfrac{2+a-2\sqrt{2a}}{a+3-2\sqrt{3a}}}\)
\(=\sqrt{\dfrac{\left(\sqrt{a}-\sqrt{2}\right)^2}{\left(\sqrt{a}-\sqrt{3}\right)^2}}\)
\(=\dfrac{\left|\sqrt{a}-\sqrt{2}\right|}{\left|\sqrt{a}-\sqrt{3}\right|}\)
a: \(=\dfrac{2\sqrt{7}-10-6+2\sqrt{7}}{4}+4+2\sqrt{7}-\dfrac{20}{9}+\dfrac{5}{9}\sqrt{7}\)
\(=\sqrt{7}-4+\dfrac{23}{9}\sqrt{7}+\dfrac{16}{9}\)
\(=\dfrac{32}{9}\sqrt{7}-\dfrac{20}{9}\)
b:\(=\dfrac{2\sqrt{6}+4+2\sqrt{6}-4}{2}+\dfrac{5}{6}\sqrt{6}\)
\(=2\sqrt{6}+\dfrac{5}{6}\sqrt{6}=\dfrac{17}{6}\sqrt{6}\)
c: \(=\dfrac{1}{3}\sqrt{3}+\dfrac{1}{6}\sqrt{2}+\dfrac{1}{\sqrt{3}}\cdot\sqrt{\dfrac{5-2\sqrt{6}}{12}}\)
\(=\dfrac{1}{3}\sqrt{3}+\dfrac{1}{6}\sqrt{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)
\(=\dfrac{2\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}=\dfrac{3\sqrt{3}}{6}=\dfrac{\sqrt{3}}{2}\)
Bài 1 :
Câu a : \(\sqrt{\dfrac{1,44}{3,61}}=\sqrt{\dfrac{144}{361}}=\dfrac{\sqrt{144}}{\sqrt{361}}=\dfrac{12}{19}\)
Câu b : \(\sqrt{\dfrac{0,25}{9}}=\sqrt{\dfrac{25}{900}}=\dfrac{\sqrt{25}}{\sqrt{900}}=\dfrac{5}{30}=\dfrac{1}{6}\)
Câu c : \(\sqrt{1\dfrac{13}{36}}.\sqrt{3\dfrac{13}{36}}=\sqrt{\dfrac{49}{36}}.\sqrt{\dfrac{121}{46}}=\dfrac{\sqrt{49}}{\sqrt{36}}.\dfrac{\sqrt{121}}{36}=\dfrac{7}{6}.\dfrac{11}{6}=\dfrac{77}{36}\)
Câu d : \(\sqrt{\dfrac{1}{121}.3\dfrac{6}{25}}=\sqrt{\dfrac{1}{121}.\dfrac{81}{25}}=\dfrac{1}{\sqrt{121}}.\dfrac{\sqrt{81}}{\sqrt{25}}=\dfrac{1}{11}.\dfrac{9}{5}=\dfrac{9}{55}\)
Câu e : \(\sqrt{1\dfrac{13}{36}.2\dfrac{2}{49}.2\dfrac{7}{9}}=\sqrt{\dfrac{49}{36}.\dfrac{100}{49}.\dfrac{25}{9}}=\dfrac{\sqrt{49}}{\sqrt{36}}.\dfrac{\sqrt{100}}{\sqrt{49}}.\dfrac{\sqrt{25}}{\sqrt{9}}=\dfrac{7}{6}.\dfrac{10}{7}.\dfrac{5}{3}=\dfrac{25}{9}\)
Bài 2 :
Câu a : \(\dfrac{\sqrt{245}}{\sqrt{5}}=\sqrt{\dfrac{245}{5}}=\sqrt{49}=7\)
Câu b : \(\dfrac{\sqrt{3}}{\sqrt{75}}=\sqrt{\dfrac{3}{75}}=\sqrt{\dfrac{1}{25}}=\dfrac{1}{5}\)
Câu c : \(\dfrac{\sqrt{10,8}}{\sqrt{0,3}}=\sqrt{\dfrac{10,8}{0,3}}=\sqrt{\dfrac{108}{3}}=\sqrt{36}=6\)
Câu d : \(\dfrac{\sqrt{6,5}}{\sqrt{58,5}}=\sqrt{\dfrac{6,5}{58,5}}=\sqrt{\dfrac{65}{585}}=\sqrt{\dfrac{1}{9}}=\dfrac{1}{3}\)