Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(125^5:25^7\)
\(=\left(5^3\right)^5:\left(5^2\right)^7\)
\(=5^{15}:5^{14}\)
= 5
2) \(27^8:9^9\)
\(=\left(3^3\right)^8:\left(3^2\right)^9\)
\(=3^{24}:3^{18}\)
\(=3^6\)
3) \(36^5:6^8\)
\(=\left(6^2\right)^5:6^8\)
\(=6^{10}:6^8\)
\(=6^2\)
4) \(49^6:7^{10}\)
\(=\left(7^2\right)^6:7^{10}\)
\(=7^{12}:7^{10}=7^2\)
5) \(7^{20}:49^9\)
\(=7^{20}:\left(7^2\right)^9\)
\(=7^{20}:7^{18}=7^2\)
6) \(\frac{1}{2^{10}}:\frac{1}{8^3}\)
\(=\frac{1}{2^{10}}:\frac{1}{\left(2^3\right)^3}\)
\(=\frac{1}{2^{10}}:\frac{1}{2^9}=\frac{1}{2^{10}}.\frac{2^9}{1}=\frac{1}{2}\)
7) \(\left(-\frac{1}{2}\right)^{21}:\frac{1}{4^{10}}\)
\(=\frac{\left(-1\right)^{21}}{2^{21}}:\frac{1}{\left(2^2\right)^{10}}\)
\(=-\frac{1}{2^{21}}:\frac{1}{2^{20}}=-\frac{1}{2^{21}}.\frac{2^{20}}{1}\)
\(=-\frac{1}{2}\)
8) \(\frac{1}{16^5}:\left(-\frac{1}{2}\right)^{18}\)
\(=\frac{1}{\left(2^4\right)^5}:\frac{\left(-1\right)^{18}}{2^{18}}\)
\(=\frac{1}{2^{20}}:\frac{1}{2^{18}}\)
\(=\frac{1}{2^{20}}.\frac{2^{18}}{1}=\frac{1}{4}\)
9) \(\frac{1}{5^{30}}:\frac{1}{25^{14}}\)
\(=\frac{1}{5^{30}}:\frac{1}{\left(5^2\right)^{14}}\)
\(=\frac{1}{5^{30}}:\frac{1}{5^{28}}=\frac{1}{25}\)
\(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{\left(3^2\cdot5\right)^{10}\cdot5^{20}}{\left(3\cdot5^2\right)^{15}}=\dfrac{3^{20}\cdot5^{10}\cdot5^{20}}{3^{15}\cdot5^{30}}=3^5=243\\ \dfrac{6^6+6^3+3^3+3^6}{-73}=\dfrac{46656+216+27+729}{-73}=-\dfrac{47628}{73}\\ \dfrac{27^7+3^{15}}{9^9-27}=\dfrac{\left(3^3\right)^7+3^{15}}{\left(3^2\right)^9-3^3}=\dfrac{3^{21}+3^{15}}{3^{18}-3^3}=\dfrac{3^{15}\left(3^6+1\right)}{3^3\left(3^{15}-1\right)}=\dfrac{3^5\cdot730}{3^{15}-1}\\ \dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
\(a,\dfrac{5^{16}\cdot27^7}{125^5\cdot9^{11}}=\dfrac{5^{16}\cdot\left(3^3\right)^7}{\left(5^3\right)^5\cdot\left(3^2\right)^{11}}\)
\(=\dfrac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}=\dfrac{5}{3}\)
\(b,\left(-0,2\right)^2\cdot5-\dfrac{2^{13}\cdot27^3}{4^6\cdot9^5}\)
\(=0,04\cdot5-\dfrac{2^{13}\cdot\left(3^3\right)^3}{\left(2^2\right)^6\cdot\left(3^2\right)^5}\)
\(=0,2-\dfrac{2^{13}\cdot3^9}{2^{12}\cdot3^{10}}\)
\(=0,2-\dfrac{2}{3}\)
\(=-\dfrac{7}{15}\)
\(c,\dfrac{5^6+2^2\cdot25^3+2^3\cdot125^2}{26\cdot5^6}\)
\(=\dfrac{5^6+2^2\cdot\left(5^2\right)^3+2^3\cdot\left(5^3\right)^2}{5^6\cdot26}\)
\(=\dfrac{5^6+4\cdot5^6+8\cdot5^6}{5^6\cdot26}\)
\(=\dfrac{5^6\left(1+4+8\right)}{5^6\cdot26}\)
\(=\dfrac{13}{26}\)
\(=\dfrac{1}{2}\)
#\(Toru\)
\(a,\dfrac{5^{16}.27^7}{125^5.9^{11}}=\dfrac{\left(5^2\right)^8.9^7.3^7}{25^5.5^5.9^{11}}\\ =\dfrac{25^8.9^7.\left(3^2\right)^3.3}{25^5.\left(5^2\right)^2.5.9^{11}}=\dfrac{25^8.9^7.9^3.3}{25^5.25^2.5.9^{11}}\\ =\dfrac{25^8.9^{10}.3}{25^7.5.9^{11}}=\dfrac{25^7.9^{10}.25.3}{25^7.9^{10}.5.9}\\ =\dfrac{25.3}{5.9}=\dfrac{5.5.3}{5.3.3}=\dfrac{5}{3}\)
a: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=\dfrac{-1}{3}\)
b: \(=\dfrac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}=\dfrac{5}{3}\)
a)=8
b)1/27
c)-1/16
d)=8
e)=216
f)=7
g)=1 (hay sao ý ) phần g ko chắc
g=\(-\frac{1}{1000}\)