Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= (-2014) - (60 - 2014)
A= (-2014) - 60 +2014
A= [(-2014) +2014] -60
A= 0 - 60
A= -60
Câu a đề không chính xác
câub) B= \(\frac{1}{1.2.3}\frac{ }{ }\)+\(\frac{1}{2.3.4}\)+\(\frac{1}{3.4.5}\)+......+\(\frac{1}{9.10.11}\)
B= \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)\)+.........+ \(\frac{1}{2}\left(\frac{1}{9.10}-\frac{1}{10.11}\right)\)
B= \(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10.11}\right)\)= \(\frac{27}{55}\)
B=1/1.2.3 +1/2.3.4 +1/3.4.5 +.....+1/9.10.11
=1/2.(2/1.2.3 +2/2.3.4 +2/3.4.5 +.......+2/9.10.11)
=1/2.(1/1.2 -1/2.3 +1/2.3 -1/3.4 +1/4.5 +........+1/9.10 -1/10 .11)
=1/2 .(1/1.2 -1/10.11)
= 1/2 .27/55
=27/110
\(A=\left(1-\frac{1}{2014}\right)\left(1-\frac{2}{2014}\right)......\left(1-\frac{2015}{2014}\right)\)
\(=\left(1-\frac{1}{2014}\right)\left(1-\frac{2}{2014}\right).....\left(1-\frac{2014}{2014}\right)\left(1-\frac{2015}{2014}\right)\)
\(=\left(1-\frac{1}{2014}\right)\left(1-\frac{2}{2014}\right)......0.\left(1-\frac{2015}{2014}\right)\)
\(=0\)
A = 1 + 2014^1 + 2014^2 + 2014^3 + ... + 2014^2014 + 2014^2015
2014A = 2014^1 + 2014^2 + 2014^3 + 2014^4 + ... 2014^2015 + 2014^2016
2014A - A = ( 2014^1 + 2014^2 + 2014^3 + 2014^4 + .... + 2014^2015 + 2014^2016 ) - ( 1 + 2014^1 + 2014^2 + 2014^3 + ... + 2014^2014 + 2014^2015 )
2013A = 2014^2016 - 1
A = 2014^2016 - 1 / 2013
B = 3 - 3^2 + 3^3 + 3^4 + ... + 3^100 ( đề hơi vui )
3B = 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101
3B - B = ( 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 ) - ( 3 - 3^2 + 3^3 + 3^4 + ... + 3^100 )
2B = ( 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 ) - 3 + 3^2 - 3^3 - 3^4 - ... - 3^100
2B = 3^2 - 3^3 + 3^101 - 3 + 3^2 - 3^3
2B = 9 - 27 + 3^101 - 3 + 9 - 27
2B = -18 + 3^101 - 3 + ( -18 )
2B = -39 + 3^101
B = -39 + 3^101 / 2
A = 1 + 2014 + 20142 + 20143 + ... + 20142014 + 20142015
2014A = 2014 + 20142 + 20143 + 20144 + ... + 20142015 + 20142016
2014A - A = ( 2014 + 20142 + 20143 + 20144 + ... + 20142015 + 20142016 ) - ( 1 + 2014 + 20142 + 20143 + ... + 20142014 + 20142015 )
2013A = 20142016 - 1
A \(=\frac{2014^{2016}-1}{2013}\)
\(A=2014.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2013}\right)\)
\(A=2014.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{1007.2013}\right)\)
\(A=2.2014.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2013.2014}\right)\)
\(A=2.2014.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)
\(A=2.2014.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(A=2.2014.\left(1-\frac{1}{2014}\right)\)
\(A=2.2014.\frac{2013}{2014}\)
\(A=\frac{2.2014.2013}{2014}\)
\(A=2.2013\)
\(A=4026\)
A = 2014 (\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+.....+\frac{1}{1+2+3+....+2013}\))
A = 2014(1+1/3 + 1/6 +....+ 1/1007.2013)
A = 2014( 2/2 + 2/6 + 2/12 +.....+ 2/2013.2014)
A = 2.2014( 1/2 + 1/6 +....+ 1/2013.2014)
A = 2.2014( 1/1.2 + 1/2.3 +.....+ 1/2013.2014)
A = 2.2014( 1 - 1/2 + 1/2 - 1/3 +.....+ 1/2013 - 1/2014)
A = 2.2014( 1 - 1/2014)
A = 2.2014 . 2013/2014
A = 2.2014.2013/2014
A = 4026
Câu hỏi của h - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
A=(-2014)-60 + 2014
= (-2014)+2014-60
= 0-60
=-60
(-2014)-(60-2014)=(-2014)-60+2014=[(-2014)+2014]-60=0-60=-60