Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1: a, |2 - x| + 2 = x
=> |2 - x| = x - 2
Dễ thấy (2 - x) và số đối của (x - 2)
=> |2 - x| = x - 2
=> 2 - x ≤ 0
=> x ≥ 2
b, Điều kiện: x + 7 ≥ 0 => x ≥ -7
Ta có: |x - 9| = x + 7
\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)
a) ta có
1 = 1+0
Ta có bảng sau:
x-1 | 1 | 0 |
y-2 | 0 |
1 |
x | 2 | 1 |
y | 2 |
3 |
Vậy x=2 , y=2
x=1 , y=3
b) Ta có : 0=0+0
ta có bảng sau:
x+3 | 0 |
y | 0 |
x | -3 |
Vậy y=0 , x=-3
Lời giải:
1. Ta thấy:
$(1-x)^2\geq 0; (3-y)^2\geq 0; (y^2-x-z)^2\geq 0$ với mọi $x,y,z$
Do đó để tổng của chúng bằng $0$ thì $(1-x)^2=(3-y)^2=(y^2-x-z)^2=0$
$\Rightarrow x=1; y=3; z=y^2-x=3^2-1=8$
2.
Bạn xem có viết lộn dấu bình phương ở cụm ( ) thứ nhất vào bên trong không vậy>
Câu a hình như sai đề rồi bạn à? Dùng máy tính thử lại không đc
Câu 1: |x + 2| \(\le\)1 => |x + 2| = 0
=> x + 2 = 0
x = 0 - 2
x = -2
Câu 3: |x| + |y| + |z| = 0
Vì giá trị tuyệt đối phải là số lớn hơn hoặc bằng 0
=> |x| = 0, |y| = 0, |z| = 0
=> x = 0, y = 0, z = 0
A = (-1) + (-2) + (-3) + ... + (-50)
A = [(-1) + (-50)] + [(-2) + (-49)] + [(-3) + (-48)] + ... + [(-25) + (-26)]
A = (-51) + (-51) + (-51) + ... + (-51)
Số số hạng của dãy số trên là:
(50 - 1) : 1 + 1 = 50 (số hạng)
Số số cặp dãy số trên là:
50 : 2 = 25 (cặp)
Tổng của dãy số trên là:
A = (-51) + (-51) + (-51) + ... + (-51)
= 25 . (-51)
= -1257
a) |x−2 ||x−2|+ |y−7| |y−7|= 0
(x − 2) + (y − 7)= 0
Vì (x − 2) + (y − 7)= 0
Nên x - 2 = 0 hoặc y - 7 = 0
x = 0 + 2 y = 0 + 7
x = 2 y = 7
Vậy x = 2 và y = 7
b, |x - 4| + |y| = 1
(x - 4) + y = 1
Vì (x - 4) + y = 1
nên x - 4 = 1 hoặc y = 1
x = 1 + 4
x = 5
Vậy x = 5 và y = 1
Câu c chưa từng làm nên không biết, mong bạn thông cảm.
Cô mk giao bài khó wá, nhìn thôi đã hoa mắt rùi @_@