\(\frac{x^2}{9}=\frac{y^2}{16}\)và \(x^2+y^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2020

1)

a) ADTC dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{9}=\frac{y^2}{16}\Rightarrow\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

Suy ra: 

\(\frac{x^2}{9}=4\Rightarrow x^2=4.9\Rightarrow x^2=36\Rightarrow x^2=4^2\Rightarrow x=4\)

\(\frac{y^2}{16}=4\Rightarrow y^2=4.16\Rightarrow y^2=64\Rightarrow y^2=8^2\Rightarrow y=8\)

Vậy x = 4 ; y = 8

b) Từ x-3y+4z ta có: \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)

ADTC dãy tỉ số bằng nhau ta có:

\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\Rightarrow\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

Suy ra:

\(\frac{x}{4}=2\Rightarrow x=4.2\Rightarrow x=8\)

\(\frac{3y}{9}=2\Rightarrow3y=9.2\Rightarrow3y=18\Rightarrow y=\frac{18}{3}\Rightarrow y=6\)

\(\frac{4z}{36}=2\Rightarrow4z=36.2\Rightarrow4z=72\Rightarrow z=\frac{72}{4}\Rightarrow z=18\)

Vậy x = 8 ; y = 6 : z = 18

8 tháng 11 2020

2/

a)  Ta có: 

2^24 = (2^3)^8 = 8^8

3^16 = (3^2)^8 = 9^8

Vì 8^8 < 9^8 nên 2^24 < 3^16

Vậy: 2^14 < 3^16

b) 

Ta có : (-32)^9 = (-2^5)^9=-2^45 mà -2^45 < -2^52 = (-2^4)^13 = -16^13

Mà -16^13 < -18^13 nên -32^9 > -18^9

c) 

Ta có: 2^332 = (2^3)^111 = 8^111

          2^223 = (3^2)^111 = 9^111

=> 8^111 < 9^111 => 2^332 < 2^223

3/ 

(2x + 3 )^2 = 25

=> ( 2x+3)^2=5^2

=> (2x+3)=5

=> Ta có 2 TH: 2x+3=5 hoặc 2x+3=-5

TH1: 2x+3=5

=> 2x=5-3

=>2x=2

=>x=2/2

=>x=1

TH2: 2x+3=-5

=>2x=(-5)+3

=>2x=-2

=>x=-2/2

=>x=-1

Vậy x=1 hoặc x=-1

    

6 tháng 10 2017

a) \(\frac{2}{3}=\frac{-10}{x}\)

\(\Rightarrow2x=-30\)

\(\Rightarrow x=-15\)

6 tháng 10 2017

b) -2|x - 1| = \(\frac{-3}{4}\)

\(\Rightarrow\)|x - 1| = \(\frac{3}{8}\)

\(\Rightarrow\)x - 1 = \(\frac{3}{8}\)hoặc\(\frac{-3}{8}\)

\(\Rightarrow\)x = \(1\frac{3}{8}\)hoặc\(1\frac{-3}{8}\)

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)Bài 2: Tìm x, y, z thão mãn:a. \(2x=3y=7z\) và  \(x+y+z-13=0\)b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot...
Đọc tiếp

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)

Bài 2: Tìm x, y, z thão mãn:

a. \(2x=3y=7z\) và  \(x+y+z-13=0\)

b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)

c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)

d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)

e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot y=15\)

f. \(\frac{x^2-y^2}{3}=\frac{y^2+x^2}{-5}=x^{10}\cdot y^{10}=1024\)

g. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)

h. \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

i. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x\cdot y+y\cdot z+x\cdot z=31\)

k. \(7x=3y:5y=7z\)  và \(x\cdot y+x\cdot z-y\cdot z=4\)

 Bìa 3: Tính 

\(Cho \frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính

\(a. A=\frac{5x+3y}{5y-4z}\)

\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)

\(c. C=\frac{2y-3z}{x+y+z}\)

Bài 4: 

\(Cho \frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\)
Tính b và 3b-4c

0
29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

16 tháng 11 2016

giúp mình nha!!!!!!!!!!!!!!!!!!!!!!!!!!!

18 tháng 10 2017
 Điểm GP: 0. Tổ
ng: 891avt783880_60by60.jpg Đỗ Đức Đạt
avt1221571_60by60.jpg
nhất sông núi
Điểm SP: 258. Điểm GP: 0. Tổng: 1765
avt1263613_60by60.jpg
Trần Hoàng Việt
Điểm SP: 236. Điểm GP: 10. Tổng: 2577
avt939481_60by60.jpg
Bùi Tiến Vỹ
Điểm SP: 137. Điểm GP: 1. Tổng: 774
avt1500213_60by60.jpg
OoO Ledegill2 OoO
Điểm SP: 117. Điểm GP: 2. Tổng: 601
avt727972_60by60.jpg
Đỗ Đức Đạt
Điểm SP: 112. Điểm GP: 1. Tổng: 446
avt1309619_60by60.jpg
Trần Hùng Luyện
Điểm SP: 101. Điểm GP: 1. Tổng: 315
avt1293383_60by60.jpg
Lê Quang Phúc
Điểm SP: 77. Điểm GP: 1. Tổng: 1545
avt821331_60by60.jpg
leminhduc
Điểm SP: 68. Điểm GP: 5. Tổng: 375
avt1516168_60by60.jpg
Nguyễn Thu Thủy
Điểm SP: 67. Điểm GP: 2. Tổng: 309
18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

12 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tĩ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)

Suy ra

x = (-2) . 9 = -18

y = (-2) . 12 = -24

z = (-2) . 15 = -30

 

12 tháng 10 2016

Áp dụng tính chất dãy tỷ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Suy ra 

x = 2 . 10 = 20

y = 2 . 6 = 12

z = 2 . 21 = 42

 

16 tháng 9 2017

Ta có : \(\frac{x-1}{5}=\frac{y-2}{2}=\frac{z-2}{3}=\frac{2y-4}{4}=\frac{x-1+2y-4-\left(z-2\right)}{5+4-3}=\frac{x-1+2y-4-z+2}{6}\)

\(=\frac{x+2y-z-3}{6}=\frac{3}{6}=\frac{1}{2}\)

Nên : \(\frac{x-1}{5}=\frac{1}{2}\Rightarrow x-1=\frac{5}{2}\Rightarrow x=\frac{7}{2}\)

          \(\frac{y-2}{2}=\frac{1}{2}\Rightarrow y-2=1\Rightarrow y=3\)

             \(\frac{z-2}{3}=\frac{1}{2}\Rightarrow z-2=\frac{3}{2}\Rightarrow z=\frac{7}{2}\)

Vậy ,,,,,,,,,,,,,,,,,,

25 tháng 6 2019

a) Thiếu đề

b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

 \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)

=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)

Vậy ...

25 tháng 6 2019

Sửa lại xíu :

 \(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)

\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)