K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2019

\(1,3\left(x+2\right)-x^2+4=0\)

\(\Rightarrow3x+6-x^2+4=0\)

\(\Rightarrow x^2-3x-10=0\)

\(\Rightarrow x^2+2x-5x-10=0\)

\(\Rightarrow x\left(x+2\right)-5\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-2\\x=5\end{cases}}\)

\(2,\left(x+2\right)\left(x-2\right)-x^2\)

\(=x^2-4-x^2=-4\)

(x + 2) (x - 2) - x2

= x2 - 22 - x2

= (x2 - x2) - 22

= 0 - 2= -22

mik ko chắc nha

28 tháng 12 2020

\(1.\)

\(\left|-0,75\right|+\frac{1}{4}-2\frac{1}{2}\)

\(=0,75+\frac{1}{4}-\frac{5}{2}\)

\(=\frac{3}{4}+\frac{1}{4}-\frac{10}{4}\)

\(=\frac{4}{4}-\frac{10}{4}\)

\(=\frac{-6}{4}=\frac{-3}{2}\)

\(2.\)

\(a,3\frac{1}{2}-\frac{1}{2}x=\frac{2}{3}\)

\(\frac{7}{2}-\frac{1}{2}x=\frac{2}{3}\)

\(\frac{1}{2}x=\frac{7}{2}-\frac{2}{3}\)

\(\frac{1}{2}x=\frac{17}{6}\)

\(x=\frac{17}{6}:\frac{1}{2}\)

\(x=\frac{17}{3}\)

Vậy x = \(\frac{17}{3}\)

\(b,3,2x+\left(-1,2\right)x+2,7\)\(=-4,9\)

\(x\cdot\left[3,2++\left(-1,2\right)\right]+2,7=-4,9\)

\(x\cdot2+2,7=-4,9\)

\(x\cdot2=-4,9-2,7\)

\(x\cdot2=-7,6\)

\(x=-7,6:2\)

\(x=-3,8\)

Vậy x=-3,8

\(3.\)

\(Có:y=f\left(x\right)\)\(=2x+\frac{1}{2}\)

\(\Rightarrow f\left(0\right)=2\cdot0+\frac{1}{2}\)\(=0+\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow f\left(1\right)=2\cdot1+\frac{1}{2}=2+\frac{1}{2}=\frac{4}{2}+\frac{1}{2}=\frac{5}{2}\)

\(\Rightarrow f\left(\frac{1}{2}\right)=2\cdot\frac{1}{2}+\frac{1}{2}\)\(=\frac{2}{2}+\frac{1}{2}=\frac{3}{2}\)

\(\Rightarrow f\left(-2\right)=2\cdot\left(-2\right)+\frac{1}{2}=-4+\frac{1}{2}=\frac{-8}{2}+\frac{1}{2}=\frac{-7}{2}\)

17 tháng 1 2018

Đặt B = \(\frac{1}{4.9}+\frac{1}{9.14}+...+\frac{1}{44.49}\)

\(=\frac{1}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+...+\frac{5}{44.49}\right)\)

\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}\right)\)

\(=\frac{1}{5}\cdot\left(\frac{1}{4}-\frac{1}{49}\right)=\frac{1}{5}\cdot\frac{45}{196}=\frac{9}{196}\)

Đặt C = \(\frac{1-3-5-....-49}{89}\)

\(=\frac{1-\left(3+5+...+49\right)}{89}\)

\(=\frac{1-\frac{\left(49+3\right).24}{2}}{89}\)

\(=\frac{1-624}{89}=\frac{-623}{89}=-7\)

\(\Rightarrow A=B.C=\frac{9}{196}\cdot\left(-7\right)=\frac{-9}{28}\)

16 tháng 1 2018

X có vô số giá trị!

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN.