Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)\) Ta có :
\(xy+2x-y=5\)
\(\Leftrightarrow\)\(x\left(y+2\right)-y-2=3\)
\(\Leftrightarrow\)\(x\left(y+2\right)-\left(y+2\right)=3\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(y+2\right)=3\)
Đến đây bạn xét các trường hợp ra
Phần 1 có rồi , phần 2 nè !
Ta có \(M=\frac{-x+24}{x-15}=\frac{-x-15+15+24}{x-15}=\frac{-\left(x+15\right)+39}{x-15}=-1+\frac{39}{x-15}\)
Để M có giá trị lớn nhất thì \(\frac{39}{x-15}\)phải nhỏ nhất
Do đó x - 15 phải lớn nhất hay x - 15 là số nguyên âm lớn nhất
Khi đó x - 15 = -1 nên x = -16 ( thỏa mãn x thuộc Z )
Vậy.....
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
1. ta có
\(3^{x+2}+4.3^{x+1}+3^{x-1}\)=66
\(3^x.3+3^x.3.4+3^x:3\)=66
3x.3+3x.12+3x.1/3=66
3x.(3+12+1/3)=66
3x.64/3=66
3x=66:64/3
3x=2187
3x=37
=> x=7
2.\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{9}=\frac{y}{12}\) (cung nhân cả hai phân số với 1/3)
\(\frac{y}{6}=\frac{z}{8}=>\frac{y}{12}=\frac{z}{16}\) (cùng nhân cả hai phân số với 1/2)
từ đây suy ra
a) \(M=\left(2x-1\right)\left(2y-1\right)=4xy-2x-2y+1=4\left(xy\right)-2\left(x+y\right)+1\)
\(M=4.16-2.10+1=45\)
b) Ta có:
\(\hept{\begin{cases}\left(x+2\right)^{2010}\ge0\\|y-\frac{1}{5}|\ge0\end{cases}}\left(\forall x,y\in R\right)\)
Khi đó \(N=\left(x+2\right)^{2010}+|y-\frac{1}{5}|-10\ge-10\)
Dấu "=" xảy ra khi x + 2 = 0 và y - 1/5 = 0
Suy ra x = -2 và y = 1/5
Bài 1:
$M=\frac{27}{x-15}-1$
Để $M$ min thì $\frac{27}{x-15}$ min.
Để $\frac{27}{x-15}$ min thì $x-15$ là số âm lớn nhất
$\Rightarrow x$ là số nguyên lớn nhất nhỏ hơn 15
$\Rightarrow x=14$
Khi đó: $M_{\min}=\frac{42-14}{14-15}=-28$
Bài 2:
\(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x-4}=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}\left[\left(\dfrac{1}{2}\right)^4+1\right]=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}.\dfrac{17}{16}=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}=16=\left(\dfrac{1}{2}\right)^{-4}\)
$\Rightarrow x-4=-4\Leftrightarrow x=0$