Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(15-x\right)+\left(x-12\right)=7-\left(x-5\right)\)
=>7-x+5=15-x+x-12
=>12-x=3
hay x=9
b: \(\Leftrightarrow x-\left\{57-\left[42-23-x\right]\right\}=13-\left\{47+25-32+x\right\}\)
\(\Leftrightarrow x-\left\{57-19+x\right\}=13-\left\{40+x\right\}\)
=>x-38-x=13-40-x
=>-27-x=-38
=>x+27=38
hay x=11
e: \(x^2+3x+9⋮x+3\)
\(\Leftrightarrow x\left(x+3\right)+9⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;9;-9;3;-3\right\}\)
hay \(x\in\left\{-2;-4;6;-12;0;-6\right\}\)
bài 2) a) \(2\left(x+1\right)=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\) vậy \(x=-1\)
b) \(x\left(x-2\right)=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\) vậy \(x=0;x=2\)
c) \(\left(x-1\right)\left(x+7\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\) vậy \(x=1;x=-7\)
d) \(\left(x+2\right)\left(x^2-9\right)=0\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x^2-9=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x^2=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\end{matrix}\right.\) vậy \(x=-2;x=3;x=-3\)
e) \(x^2\left(x-5\right)+2\left(x-5\right)=0\Leftrightarrow\left(x^2+2\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2=0\\x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\) vậy \(x=5\)
bài 1) \(A=48+\left(-48-174\right)+\left|-74\right|=48-48-174+74=-100\)
\(B=\left(-123\right)+77+\left(-257\right)-23-43=-123+77-257-23-43=-369\)
\(C=\left(-57\right)+\left(-159\right)+47+169=-57-159+47+169=0\)
quá hợp lí
1.a)43+(9-21)=317-(x+317)
<=>31=317-317-x
<=>x=-31
b)(15-x)+(x-12)=7-(-5+x)
<=>15-12-x+x=7+5-x
<=>x=12-3=9
c)-{57-[42+(-23-x)]}=13-{47+[25-(32-x)]}
<=>-{57-[42-23-x]}=13-{47+[25-31+x]}
<=>-{57-19+x}=13-{47-6+x}
<=>-38-x=-28-x
<=>0x=10
<=>x\(\in\varnothing\)
a) x.(x-1)=0
\(\Rightarrow\)x=0 hoặc x-1=0
\(\Rightarrow\)x=0+1
\(\Rightarrow\)x=1
vậy x=1 hoặc x=0
b) -x.(x+3)=0
\(\Rightarrow\)-x = 0 hoặc x+3 = 0
\(\Rightarrow\)x= 0-3
\(\Rightarrow\)x=-3
vậy x=0 hoặc x=-3
c) (2x-4).(x+2)=0
(2x-4)= 0
2x=0+4
2x=4
x=4:2
x=2
hoặc (x+2)=0
x= 0-2
x=-2
vậy x=2 hoặc x=-2
d) (3-x).|x+5|=0
3-x = 0
x= 3-0
x=3
hoặc |x+5|=0
x+ 5=0
x=0-5
x=-5
vậy x=3 hoặc x=-5
e) (|x|+1).( 4-2x) = 0
(|x|+1) =0
|x|= 0-1
|x|=-1
hoặc( 4-2x) = 0
2x=4-0
2x=4
x=4:2
x=2
g) x2+5x=0
x2=0
x=0
hoặc 5x=0
x= 0: 5
x=0
vậy x=0
2)
a) (x+3).(y-5)= 7
(x+3)và (y-5)\(\in\)Ư(7)=\(\left\{1;-1;7;-7\right\}\)
x+3 | 1 | 7 | -1 | -7 |
y-5 | 7 | 1 | -7 | -1 |
x | -2 | 4 | -4 | -10 |
y | 12 | 6 | 2 | 4 |
b) xy + 3x - 2y= 11
x( y+3) -2y=11
x(y-3)- 2( y+3) +6 = 11
( y+3) ( x-2) = 5
vì x,y thuộc Z \(\Leftrightarrow\)y+3 và x-2 \(\in\)Z
do đó y+3 và x-2 \(\in\)Ư ( 5)= \(\left\{1;5;-1;-5\right\}\)
y+3 | 1 | 5 | -1 | -5 |
x-2 | 5 | 1 | -5 | -1 |
y | -2 | 2 | -4 | -8 |
x | 7 | 3 | -3 | 1 |
\(\in\)\(\in\)
c) xy + 3x - 7y= 21
x( y+3) -7y= 21
x( y+3) - 7( y+3)+21= 21
(y+3)( x-7) =0
y+3 | 0 | |
x-7 | 0 | |
y | -3 | |
x | 7 |
CÂU 10:
a, -x - 84 + 214 = -16 b, 2x -15 = 40 - ( 3x +10 )
x = - ( -16 -214 + 84 ) 2x + 3x = 40 -10 +15
x = 16 + 214 - 84 5x = 45
x = 146 x = 9
c, \(|-x-2|-5=3\) d, ( x - 2)(2x + 1) = 0
\(|-x-2|=8\) => x - 2 = 0 hoặc 2x + 1 = 0
=> - x - 2 = 8 hoặc x + 2 = 8 \(\orbr{\begin{cases}x-2=0\\2x+1=0\end{cases}=>}\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)
\(\orbr{\begin{cases}-x-2=8\\x+2=8\end{cases}=>\orbr{\begin{cases}x=-10\\x=6\end{cases}}}\)
1a/ \(\left(15-x\right)+\left(x-12\right)=7-\left(-5+x\right)\)
=> \(\left(15-x\right)+\left(x-12\right)+\left(-5+x\right)=7\)
=> \(15-x+x-12-5+x=7\)
=> \(\left(15-12-5\right)-\left(x+x+x\right)=7\)
=> \(\left(15-12-5\right)-7=3x\)
=> \(3x=-2-7\)
=> \(3x=-9\)
=> \(x=\frac{-9}{3}=-3\)
b/ \(x-\left\{57-\left[42+\left(-23-x\right)\right]\right\}=13-\left\{47+\left[25-\left(32-x\right)\right]\right\}\)
=> \(x-57-42-23-x=13-47+25-32+x\)
=> \(x-x+x=13-47+25-32+57+42+23\)
=> \(x=\left(13+23\right)-\left(47+57\right)+\left(25+57\right)-\left(32+42\right)\)
=> \(x=36-104+82-74\)
=> \(x=-60\)
d/ \(\left(x-3\right)\left(2y+1\right)=7\)
Vì 7 là số nguyên tố nên ta có 2 trường hợp:
TH1: \(\hept{\begin{cases}x-3=1\\2y+1=7\end{cases}}\)=> \(\hept{\begin{cases}x=4\\y=3\end{cases}}\).
TH2: \(\hept{\begin{cases}x-3=7\\2y+1=1\end{cases}}\)=> \(\hept{\begin{cases}x=10\\y=0\end{cases}}\).
Các cặp (x, y) thoả mãn điều kiện: \(\left(4;3\right),\left(10;0\right)\).