Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left|2x-1\right|=\left|2x+3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2x+3\left(loại\right)\\2x-1=-2x-3\end{matrix}\right.\Leftrightarrow2x+2x=-3+1\)
\(\Leftrightarrow4x=-2\)
hay \(x=-\dfrac{1}{2}\)
\(|5x-3|-x=7\)
\(|5x-3|=7+x\)
\(\orbr{\begin{cases}5x-3=7+x\\5x-3=-7-x\end{cases}}\)
\(\orbr{\begin{cases}5x-x=7+3\\5x+x=-7+3\end{cases}}\)
\(\orbr{\begin{cases}4x=10\\6x=-4\end{cases}}\)
\(\orbr{\begin{cases}x=2,5\\x=\frac{-2}{3}\end{cases}}\)
Vậy x = 2,5 hoặc x = -2/3
Hi Hi!
a) \(\left|3x-1\right|=5\)
\(\Rightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\Rightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-4}{3}\end{cases}}\)
b) \(\left|x-1\right|+11=45\)
\(\Rightarrow\left|x-1\right|=35\)
\(\Rightarrow\orbr{\begin{cases}x-1=35\\x-1=-35\end{cases}\Rightarrow\orbr{\begin{cases}x=36\\x=-34\end{cases}}}\)
c)\(\left|2x+1\right|=\left|2x-3\right|\)
\(\Rightarrow\orbr{\begin{cases}2x+1=2x-3\\2x+1=-2x+3\end{cases}\Rightarrow\orbr{\begin{cases}2x-2x=-3-1\\2x+2x=3-1\end{cases}\Rightarrow}\orbr{\begin{cases}0=-4\\4x=2\end{cases}\Rightarrow}\orbr{\begin{cases}vôlis\\x=\frac{1}{2}\end{cases}}}\)
d)\(\left|x+1\right|-5x=7\)
\(\Rightarrow\left|x+1\right|=7+5x\)
\(\Rightarrow\orbr{\begin{cases}x+1=7+5x\\x+1=-7-5x\end{cases}\Rightarrow\orbr{\begin{cases}x-5x=7-1\\x+5x=-7-1\end{cases}\Rightarrow}\orbr{\begin{cases}-4x=6\\6x=-8\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{4}{3}\end{cases}}}\)
hok tốt!!!
\(a,\Rightarrow\left[{}\begin{matrix}2x-3=5\\3-2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\\ b,\Rightarrow\left|x-1\right|=1-3x\\ \Rightarrow\left[{}\begin{matrix}x-1=1-3x\\x-1=3x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)
a) \(\Rightarrow\left[{}\begin{matrix}2x-3=5\\2x-3=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=8\\2x=-2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
b) \(\left|x-1\right|+3x=1\left(đk:x\le\dfrac{1}{3}\right)\)
\(\Rightarrow x-1=3x-1\)
\(\Rightarrow2x=0\Rightarrow x=0\left(tm\right)\)
a)Đặt A (x) = 0
hay \(3x-6=0\)
\(3x\) \(=6\)
\(x\) \(=6:3\)
\(x\) \(=2\)
Vậy \(x=2\) là nghiệm của A (x)
b) Đặt B (x) = 0
hay \(2x-10=0\)
\(2x\) \(=10\)
\(x\) \(=10:2\)
\(x\) \(=5\)
Vậy \(x=5\) là nghiệm của B (x)
c) Đặt C (x) = 0
hay \(x^2-1=0\)
\(x^2\) \(=1\)
\(x^2\) \(=1:1\)
\(x^2\) \(=1\)
\(x\) \(=\overset{+}{-}1\)
Vậy \(x=1;x=-1\) là nghiệm của C (x)
d) Đặt D (x) = 0
hay \(\left(x-2\right).\left(x+3\right)=0\)
⇒ \(x-2=0\) hoặc \(x+3=0\)
* \(x-2=0\) * \(x+3=0\)
\(x\) \(=0+2\) \(x\) \(=0-3\)
\(x\) \(=2\) \(x\) \(=-3\)
Vậy \(x=2\) hoặc \(x=-3\) là nghiệm của D (x)
e) Đặt E (x) = 0
hay \(x^2-2x=0\)
⇔\(\left[{}\begin{matrix}x^2-2x\\\left(x-2\right)x\end{matrix}\right.\)
⇒\(\left(x-2\right)x\)
⇔ \(x.\left(2x-1\right)=0\)
⇔ \(\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=2\) là nghiệm của E (x)
f) Đặt F (x) = 0
hay \(\left(x^2\right)+2=0\)
\(x^2\) \(=0-2\)
\(x^2\) \(=-2\)
\(x\) \(=\overset{-}{+}-2\)
Do \(\overset{+}{-}-2\) không bằng 0 nên F (x) không có nghiệm
Vậy đa thức F (x) không có nghiệm
g) Đặt G (x) = 0
hay \(x^3-4x=0\)
⇔\(\left[{}\begin{matrix}x^3-4x\\\left(x-4\right)x^2\end{matrix}\right.\)
⇒ \(\left(x-4\right)x^2=0\)
⇔ \(x.\left(4x-1\right)=0\)
⇔\(\left[{}\begin{matrix}x=0\\4x-1=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=\dfrac{1}{4}\) là nghiệm của G (x)
h) Đặt H (x) = 0
hay \(3-2x=0\)
\(2x\) \(=3+0\)
\(2x\) \(=3\)
\(x\) \(=3:2\)
\(x\) \(=\dfrac{3}{2}\)
Vậy \(x=\dfrac{3}{2}\) là nghiệm của H (x)
CÂU G) MIK KHÔNG BIẾT CÓ 2 NGHIỆM HAY LÀ 3 NGHIỆM NỮA
|2x-3|=5 suy ra:th1:2x-3=5 2x=5+3 2x=8 x=8:2 x=4 th2:2x-3=-5 2x=-5+3 x=-2 x=-2:2 x=-1
1.
a) | 2x+3 |= 5
=>2x+3=\(\pm\) 5
=>\(\left[\begin{array}{nghiempt}2x+3=5\\2x+3=-5\end{array}\right.\) => \(\left[\begin{array}{nghiempt}2x=2\\2x=-8\end{array}\right.\) => \(\left[\begin{array}{nghiempt}x=1\\x=-4\end{array}\right.\)
Vậy x\(\in\)\(\left\{1;-4\right\}\)