K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

1) \(9^{x-1}=\dfrac{1}{9}\) (1)

\(\Leftrightarrow3^{2x-2}=3^{-2}\)

\(\Leftrightarrow2x-2=-2\)

\(\Leftrightarrow2x=0\)

\(\Leftrightarrow x=0\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{0\right\}\)

2) \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\) (2)

\(\Leftrightarrow\dfrac{1}{3}\cdot\dfrac{1}{\sqrt{7-3x^2}}=\dfrac{2}{15}\)

\(\Leftrightarrow\dfrac{1}{3\sqrt{7-3x^2}}=\dfrac{2}{15}\)

\(\Leftrightarrow15=6\sqrt{7-3x^2}\)

\(\Leftrightarrow6\sqrt{7-3x^2}=15\)

\(\Leftrightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)

\(\Leftrightarrow7-3x^2=\dfrac{25}{4}\)

\(\Leftrightarrow-3x^2=\dfrac{25}{4}-7\)

\(\Leftrightarrow-3x^2=-\dfrac{3}{4}\)

\(\Leftrightarrow x^2=\dfrac{1}{4}\)

\(\Leftrightarrow x=\pm\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy tập nghiệm phương trình (2) là \(S=\left\{-\dfrac{1}{2};\dfrac{1}{2}\right\}\)

18 tháng 6 2017

2 phần trên bạn giải theo kiến thức lớp mấy vậy?

18 tháng 6 2017

Ta có : \(9^{x-1}=\frac{1}{9}\)

=> \(9^{x-1}=9^{-1}\)

=> x - 1 = -1

=> x = 0 

ko biết bạn học mũ âm chưa nêu chưa thì mk xin lỗi 

=> 

18 tháng 6 2017

Cảm ơn bạn nha. Còn mấy phần kia bạn biết làm không?

18 tháng 6 2017

Bài 1:

a, \(9^{x-1}=\dfrac{1}{9}\)

\(\Rightarrow9^{x-1}=9^{-1}\)

\(9\ne-1;9\ne0;9\ne1\) nên

\(x-1=-1\Rightarrow x=0\)

Vậy \(x=0\)

b, \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\)

\(\Rightarrow\sqrt{7-3x^2}=\dfrac{1}{3}:\dfrac{2}{15}\)

\(\Rightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)

\(\Rightarrow\left(\sqrt{7-3x^2}\right)^2=\left(\dfrac{5}{2}\right)^2\)

\(\Rightarrow7-3x^2=\dfrac{25}{4}\)

\(\Rightarrow3x^2=\dfrac{3}{4}\Rightarrow x^2=\dfrac{1}{4}\)

\(\Rightarrow x=\pm\dfrac{1}{2}\)

Vậy \(x=\pm\dfrac{1}{2}\)

Chúc bạn học tốt!!!

18 tháng 6 2017

Bài 2:

Với mọi giá trị của \(x;y;z\in R\) ta có:

\(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2\ge}0;\left|x+y+z\right|\ge0\)

\(\Rightarrow\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\ge0\) với mọi giá trị của \(x;y;z\in R\).

Để \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\) thì

\(\left\{{}\begin{matrix}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\\sqrt{2}-\sqrt{2}+z=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)

Vậy \(x=\sqrt{2};y=-\sqrt{2};z=0\)

Chúc bạn học tốt!!!

5 tháng 10 2018

4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)

\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)

Tìm z thì dễ rồi

14 tháng 11 2017

3,5 + /x + \(\frac{3}{2}\) / = -1,5(-\(\sqrt{9}\))

=> 3,5 +/ x +\(\frac{3}{2}\) / = -1,5 ( -3 )

=> 3,5 + / x + \(\frac{3}{2}\) / =4,5

=> / x + \(\frac{3}{2}\) / = 4,5 - 3,5 

=> / x + \(\frac{3}{2}\) / = 1

=> \(\hept{\begin{cases}x+\frac{3}{2}=1\\x+\frac{3}{2}=-1\end{cases}}\)

=> \(\hept{\begin{cases}x=1-\frac{3}{2}\\x=-1-\frac{3}{2}\end{cases}}\)

=> \(\hept{\begin{cases}x=\frac{-1}{2}\\x=\frac{-5}{2}\end{cases}}\)

vậy x = \(\frac{-1}{2}\)hay x = \(\frac{-5}{2}\)

14 tháng 11 2017

\(3,5+\left|x+\frac{3}{2}\right|=-1,5.\left(-\sqrt{9}\right)\)                                                                                                                                                \(3,5+\left|x+\frac{3}{2}\right|=-1,5.\left(-3\right)\)                                                                                                                                                        \(3,5+\left|x+\frac{3}{2}\right|=4,5\)                                                                                                                                                                    \(\left|x+\frac{3}{2}\right|=4,5-3,5\)                                                                                                                                                                    \(\left|x+\frac{3}{2}\right|=1\)                                                                                                                                                                                           \(\Rightarrow\orbr{\begin{cases}x+\frac{3}{2}=1\\x+\frac{3}{2}=-1\end{cases}}\)                                                                                                                                                                                \(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-\frac{5}{2}\end{cases}}\)                                                                                                                                                                              Vậy x=\(-\frac{1}{2}\) hoặc x=\(-\frac{5}{2}\)

29 tháng 10 2016

\(\sqrt{\left(x-3\sqrt{5}\right)^2}+\sqrt{\left(y+3\sqrt{5}\right)^2}+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left|x-3\sqrt{5}\right|+\left|y+3\sqrt{5}\right|+\left|x+y+z\right|=0\)

\(\Leftrightarrow\begin{cases}x-3\sqrt{5}=0\\y+3\sqrt{5}=0\\x+y+z=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=3\sqrt{5}\\y=-3\sqrt{5}\\z=-x-y=-3\sqrt{5}+3\sqrt{5}=0\end{cases}\)

27 tháng 3 2017

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)

<=>\(\left|x-\sqrt{2}\right|+\left|y+\sqrt{2}\right|+\left|x+y+z\right|=0\)

Vì \(\left|x-\sqrt{2}\right|\ge0;\left|y+\sqrt{2}\right|\ge0;\left|x+y+z\right|\ge0\)

=>\(\left|x-\sqrt{2}\right|+\left|y+\sqrt{2}\right|+\left|x+y+z\right|\ge0\)

Dấu "=" xảy ra khi \(\left|x-\sqrt{2}\right|=\left|y+\sqrt{2}\right|=\left|x+y+z\right|=0\)

\(\left|x-\sqrt{2}\right|=0\Leftrightarrow x-\sqrt{2}=0\Leftrightarrow x=\sqrt{2};\left|y+\sqrt{2}\right|=0\Leftrightarrow y+\sqrt{2}=0\Leftrightarrow y=-\sqrt{2}\)

\(\left|x+y+z\right|=0\Leftrightarrow x+y+z=0\Leftrightarrow\sqrt{2}+\left(-\sqrt{2}\right)+z=0\Leftrightarrow z=0\)

Vậy .......

27 tháng 3 2017

do căn >= 0 lx+y+zl >=0 nên vế trái >=0
mà vế trái =0 => từng cái =0

22 tháng 2 2018

Ta thấy : VT >= 0

Dấu "=" xảy ra <=> x-\(\sqrt{2}\)= 0 ; y+\(\sqrt{2}\)= 0 ; x+y+z = 0 

<=> x=\(\sqrt{2}\);  y=\(-\sqrt{2}\); z = 0

Vậy ...........

Tk mk nha