Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a)x.(x+3)=0
=> x=0 hoặc x+3=0
ta có: x+3=0
x = -3
Vậy x=0 hoặc x=-3
b) (x-2). (5-x) = 0
=> x-2=0 hoặc 5-x =0
TH1
x-2=0
x =2
TH2
5-x =0
x =5
Vậy x=5 hoặc x=2
Bài 2
a) Để A có GTNN thì | x: 9| + |y-5| < 0
=> A=1890 +|x:9|+ | y-5| < 1890
Dấu = chỉ xảy ra khi | x: 9|+|y-5|=0
1)a Ta có: \(A=\left|x+19\right|+\left|y-5\right|+1890\)
\(\hept{\begin{cases}\left|x+19\right|\ge0\\\left|y-5\right|\ge0\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890}\)
Vậy giá trị A nhỏ nhất = 1890 <=> x=-19; y= 5
2) a. \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=2019\)
\(\left(1+3+5+...+99\right)+\left(x+x+x+...+x\right)=2019\)
Rồi bn tính tổng của dãy số cách đều nha. Công thức: (Số cuối+ Số đầu). Số số hạng: 2
3) Ta có: \(A^2=b\left(a-c\right)-c\left(a-b\right)\)
\(A^2=ab-bc-ac+bc\)
\(A^2=\left(-bc+bc\right)+\left(ab-ac\right)\)
\(A^2=0+a\left(b-c\right)\)
\(A^2=-20.\left(-5\right)=100\)
\(\Rightarrow A=10\)
Chúc bạn năm mới vui vẻ nha! Happy new year !
Bài 1: a) min B=50 (vì |y-3|>=0) khi |y-3|=0=> y=3
b) tương tự min C=-1 khi x=100 và y=-200
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
a, Ta có : \(\left|x+19\right|\ge0\forall x;\left|y-5\right|\ge0\forall y\)
\(\Rightarrow A\ge1890\)Dấu ''='' xảy ra <=> x = -19 ; y = 5
Vậy GTNN A là 1890 <=> x = -19 ; y = 5
b, Ta có : \(-\left(\left|x-7\right|+\left|y+13\right|\right)+1945\le1945\)
hay \(\Rightarrow B\le1945\)
vì \(\left|x-7\right|\ge0\forall x;\left|y+13\right|\ge0\forall y\)
Dấu''='' xảy ra <=> x = 7 ; y = -13
Vậy GTLN B là 1945 <=> x = 7 ; y = -13
a) A=|x+19|+|y-5|+1890
Để A nhỏ nhất thì |x +19| và |y -5| nhỏ nhất
Ta thấy |x +19| và |y -5| ≥ 0 (với ∀ x,y) ⇒ |x +19| + |y -5| + 1890 ≥ 1890
Dấu "=" xảy ra khi x = -19 và y = 5
Vậy GTNN của A là 1890 tại x= -19 và y= 5
b) B=-|x-7| - |y+13|+1945
Ta thấy: -|x-7| và -|y-5| ≤ 0 (với ∀ x,y) ⇒ -|x-7| - |y+13|+1945 ≤ 1945
Dấu "=" xảy ra khi x= 7 và y= 5
Vậy GTLN của B là 1945 tại x= 7 và y= 5
a) Tìm giá trị nhỏ nhất của biểu thức:
A= |x+19|+ |y – 5| + 1890
Vì |x+19| lớn hơn hoặc bằng 0 với mọi x
=> A có GTNN <=> |x+19| nhỏ nhất
=> |x+19| = 0
x+19 = 0
x = 0 - 19
x = -19
Vì |y – 5| lớn hơn hoặc bằng 0 với mọi x
=> A có GTNN <=> |y – 5| nhỏ nhất
=> |y – 5| = 0
y – 5 = 0
y = 0 + 5
y = 5
A= |x+19|+ |y – 5| + 1890
Thay số:
A= |(-19)+19|+ |5 – 5| + 1890
A= |0|+ |0| + 1890
A= 0 + 0 +1890
A = 1890
Vậy GTNN của A là 1890 <=> x = -19
y = 5
A = | x - 2 | + | y + 5 | - 15
Ta có \(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|y+5\right|\ge0\end{cases}\forall xy}\)
\(\Rightarrow\left|x-2\right|+\left|y+5\right|\ge0\forall xy̸\)
\(\Rightarrow\left|x-2\right|+\left|y+5\right|-15\ge-15\forall xy\)
\(\Rightarrow A\ge-15\forall xy\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|y+5\right|=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-2=0\\y+5=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=2\\y=-5\end{cases}}\)
Vạy Min A = - 15 <=> x = 2 và y = - 5
@@ Học tốt
Chiyuki Fujito
Ta có: |x - 2| \(\ge\)0 \(\forall\)x; |y + 5| \(\ge\)0 \(\forall\)y
=> |x - 2| + |y + 5| - 15 \(\ge\)15 \(\forall\)xy
=> A \(\ge\)-15
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2=0\\y+5=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2\\y=-5\end{cases}}\)
Vậy MinA = -15 khi x = 2 và y= -5
1) a) x(x + 3) = 0 <=> \(\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
b) (x - 2)(5 - x) = 0 <=> \(\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
3) a) x(y - 3) = -19
Tới đây giải pt ước số nha
b) 3x + 4y - xy = 16
<=> x(3 - y) - 4(3 - y) = 4
<=> (x - 4)(3 - y) = 4
Tới đây giải pt ước số nha
MN GIÚP MIK BÀI NÀO CX ĐC
THANKS!!