K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2018

\(1\frac{2}{3};\frac{3}{4};0,4;\frac{1}{5};0;-0,675\)

4 tháng 11 2023

\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)

4 tháng 11 2023

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)

5 tháng 10 2020

Vì \(\left|\frac{1}{2}-x\right|\ge0\forall x\)

=> \(0,6+\left|\frac{1}{2}-x\right|\ge0,6\forall x\)

Dấu " = " xảy ra khi và chỉ khi \(\left|\frac{1}{2}-x\right|=0\)=> x = 1/2

Vậy \(A_{min}=0,6\)khi x = 1/2

Vì \(\left|2x+\frac{2}{3}\right|\ge0\forall x\)

=> \(-\left|2x+\frac{2}{3}\right|\le0\forall x\)

=> \(\frac{2}{3}-\left|2x+\frac{2}{3}\right|\le\frac{2}{3}\forall x\)

Dấu " = " xảy ra khi và chỉ khi \(\left|2x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{1}{3}\)

Vậy \(B_{max}=\frac{2}{3}\)khi x = -1/3

Câu b là tìm max chứ ta ? 

14 tháng 9 2015

Vì |1/2 - x| > 0

=> 0,6 + |1/2 - x| > 0,6

=> A > 0,6

Dấu "=" xảy ra

<=> 1/2 - x = 0

<=> x = 1/2

KL: Amin = 0,6 <=> x = 1/2

Vì |2x + 2/3| > 0

=> 2/3 - |2x + 2/3| < 2/3

=> B < 2/3

Dấu "=" xảy ra

<=> 2x + 2/3 = 0

<=> 2x = -2/3

<=> x = -1/3

KL: Bmax = 2/3 <=> x = -1/3

3 tháng 9 2018

a) Ta có : | 1/2 - x | >= 0 với mọi x

=> 0,6 + | 1/2 - x | >= 0,6 với mọi x

Dấu " = " xảy ra <=> 1/2 - x = 0 => x = 1/2

Vậy,_

b) Ta có : | 2y + 2/3 | >= với mọi x

=> 2/3 - | 2y + 2/3 | < 2/3 với mọi x

Dấu " = " xảy ra <=> 2y + 2/3 = 0 => y = -1/3

Vậy,_

3 tháng 9 2018

a,  Do \(|\frac{1}{2}-x|\)\(\ge\)\(0\)với mọi x \(\Rightarrow\)\(A\ge0,6\)

Dấu bằng xảy ra \(\Leftrightarrow\) \(|\frac{1}{2}-x|=0\Leftrightarrow\frac{1}{2}-x=0\Leftrightarrow x=\frac{1}{2}\)

Vậy GTNN \(A=0,6\Leftrightarrow x=\frac{1}{2}\)

b, Do \(|2y+\frac{2}{3}|\ge0\)với mọi y \(\Rightarrow\) \(B\le\frac{2}{3}\)

Dấu bằng xảy ra \(\Leftrightarrow\)\(|2y+\frac{2}{3}|=0\Leftrightarrow2y+\frac{2}{3}=0\Leftrightarrow2y=\frac{-2}{3}\Leftrightarrow y=\frac{-1}{3}\)

Vậy GTLN \(B=\frac{2}{3}\)\(\Leftrightarrow y=\frac{-1}{3}\)