Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)
Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)
Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)
Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)
Và \(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:
\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt
Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)
\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)
\(c,x^3+6x^2+12x+8=0\)
\(\Leftrightarrow\left(x+2\right)^3=0\)
\(\Leftrightarrow x+2=0\Rightarrow x=-2\)
\(d,x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
\(e,8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)
\(f,x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Rightarrow x+3=0\Rightarrow x=-3\)
a) (x-3)(x+3)-(x-1)^2=0
=> (x^2-9)-(x^2-2x+1)=0
=>x^2-9-x^2+2x-1=0
=>(x^2-x^2)-9-1+2x=0
=>-10+2x=0
=>-2.(-5-x)=0
=>-5-x=0
=>-x=0+5
=>x=-5
vậy x=-5
b) x^3-3x^2+3x-1=0
=>(x-1)^3=0
=>x-1=0
=>x=0+1
=>x=1
vậy x=1
c) 4x^2-28x=0
=>4x.(x-7)=0
=> 2 TH
* 4x=0=>x=0
*x-7=0=>x=0+7=>x=7
vậy x=0 hoặc x=7
b) \(x^2-2x-3=0\)
\(D=b^2-4ac\)
\(\left(-2\right)^2-\left(4\left(1.3\right)\right)=16\)
\(x_{1,2}=\frac{-b-\sqrt{D}}{2a}=\frac{2-\sqrt{16}}{2}\)
\(x=1;-3\)
\(\frac{3a^3\left(x^2-1\right)^4}{3a^3\left(x^2-1\right)^3}=15\)
\(x^2-1=15\)
\(x^2=15+1\)
\(x^2=16\)
\(x^2=\left(\pm4\right)^2\)
\(x=\pm4\)
\(\frac{3x^5-4x^3}{x^3}-\frac{\left(3x+1\right)^3}{3x+1}-\frac{3x^7}{x^5}=0\)
\(\frac{x^3\left(3x^2-4\right)}{x^3}-\left(3x+1\right)^2-3x^2=0\)
\(3x^2-4-\left(3x+1\right)^2-3x^2=0\)
\(-4-\left(3x+1\right)^2=0\)
Không tìm được x thoả mãn yêu cầu vì \(-4-\left(3x+1\right)^2\le-4< 0\)
\(\frac{x^2+\frac{1}{2}x}{\frac{1}{2}x}-\frac{\left(2x+1\right)^3}{\left(2x+1\right)^2}+\frac{\left(x+1\right)^5}{\left(x+1\right)^2}=0\)
\(\frac{\frac{1}{2}x\left(2x+1\right)}{\frac{1}{2}x}-\left(2x+1\right)+\left(x+1\right)^3=0\)
\(\left(2x+1\right)-\left(2x+1\right)+\left(x+1\right)^3=0\)
\(x+1=0\)
\(x=-1\)
a: \(\left(3x-1\right)^2-\left(x+3\right)^3=\left(2-x\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow9x^2-6x+1-x^3-9x^2-27x-27=8-x^3\)
\(\Leftrightarrow-x^3-33x-26-8+x^3=0\)
=>-33x=34
hay x=-34/33
b: \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow x^4-1-x^4+2x^2-1=2\)
\(\Leftrightarrow2x^2=4\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
c: \(x^2-2\sqrt{3}x+3=0\)
\(\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\)
hay \(x=\sqrt{3}\)
d: \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-x+\sqrt{2}\right)=0\)
\(\Leftrightarrow x-\sqrt{2}=0\)
hay \(x=\sqrt{2}\)
Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
a) \(\left(1+x\right)^3+\left(1-x\right)^3=0\)
\(\Leftrightarrow1+3x+3x^2+x^3+1-3x+3x^2-x^3=0\)
\(\Leftrightarrow6x^2+2=0\)
\(\Leftrightarrow2\left(3x^2+1\right)=0\)
\(\Leftrightarrow3x^2+1=0\)
\(\Leftrightarrow x^2=-\frac{1}{3}\)(vô lí)
vậy phương trình vô nghiệm
phần b bạn làm tương tự nhé!
a) \(\left(1+x\right)^3 +\left(1-x\right)^3=0\)
\(\Rightarrow\hept{\begin{cases}\left(1+x\right)^3=0\\\left(1-x\right)^3=0\end{cases}}\Rightarrow\hept{\begin{cases}1+x=0\\1-x=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\x=1\end{cases}}\)
b) \(\left(3+x\right)^3-\left(3-x\right)^3=0\)
\(\Rightarrow\hept{\begin{cases}\left(3+x\right)^3=0\\\left(3-x\right)^3=0\end{cases}}\Rightarrow\hept{\begin{cases}3+x=0\\3-x=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\)