Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (2x+3)(4x2-6x+9)-2(4x3-1)+(8x-1)=15
<=>8x3+27-8x3+2+8x-1=15
<=>8x+28=15
<=>8x=-13
<=>x=-13/8
b) (x+3)3-(x+9)(x2+27)-(5x-216) = 3x-4
<=>x3+9x2+27x+27-x3-27x-9x2-243-5x+216=3x-4
<=>-5x=3x-4
<=>8x=4
<=>x=1/2
a) ( x + 3 )( x2 - 3x + 9 ) - x( x - 2 )2 = 27
⇔ x3 + 27 - x( x2 - 4x + 4 ) = 27
⇔ x3 + 27 - x3 + 4x2 - 4x = 27
⇔ 4x2 - 4x + 27 - 27 = 0
⇔ 4x2 - 4x = 0
⇔ 4x( x - 1 ) = 0
⇔ 4x = 0 hoặc x - 1 = 0
⇔ x = 0 hoặc x = 1
b) ( x - 1 )( x - 5 ) + 3 = 0
⇔ x2 - 5x - x + 6 + 3 = 0
⇔ x2 - 6x + 9 = 0
⇔ ( x - 3 )2 = 0
⇔ x - 3 = 0
⇔ x = 3
\(x^{27}+x^9-3x+x^3+4x=x\left(\left(x^2\right)^{13}-\left(1^2\right)^{13}\right)+x\left(\left(x^4\right)^2-\left(1^4\right)^2\right)+x\left(x^2-1\right)+4x\\ \)
\(x\left(x^2-1\right)Q\left(x\right)+x\left(\left(x^2\right)^2-\left(1\right)^2\right)\left(x^4+1\right)P\left(x\right)+x\left(x^2-1\right)+4x\)
Chia x^2-1 dư 4x
a) 2x2 - 5x3 = 0
⇔ x2( 2 - 5x ) = 0
⇔ \(\orbr{\begin{cases}x^2=0\\2-5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{5}\end{cases}}\)
b) ( x + 1 )( 2 - x ) - ( 3x + 5 )( x + 2 ) = -4x2 + 2
⇔ -x2 + x + 2 - ( 3x2 + 11x + 10 ) + 4x2 - 2 = 0
⇔ 3x2 + x - 3x2 - 11x - 10 = 0
⇔ -10x - 10 = 0
⇔ -10x = 10
⇔ x = -1
c) ( x + 3 )( x2 - 3x + 9 ) - x( x - 2 )2 = 27
⇔ x3 + 27 - x( x2 - 4x + 4 ) - 27 = 0
⇔ x3 - x3 + 4x2 - 4x = 0
⇔ 4x( x - 1 ) = 0
⇔ \(\orbr{\begin{cases}4x=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
d) ( x - 1 )( x - 5 ) + 3 = 0
⇔ x2 - 6x + 5 + 3 = 0
⇔ x2 - 6x + 8 = 0
⇔ x2 - 2x - 4x + 8 = 0
⇔ x( x - 2 ) - 4( x - 2 ) = 0
⇔ ( x - 2 )( x - 4 ) = 0
⇔ \(\orbr{\begin{cases}x-2=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=4\end{cases}}\)
\(x^3+27=-x^2+9\Leftrightarrow x^3+x^2+18=0\Leftrightarrow\left(x+3\right)\left(x^2-2x+6\right)=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)(do \(x^2-2x+6=\left(x-1\right)^2+5\ge5>0\))
Ta có: \(x^3+27=-x^2+9\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-3\right)=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3