Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\Leftrightarrow\Delta'=4\left(m+1\right)^2+1-m^2< 0\)
\(\Leftrightarrow3m^2+8m+5< 0\Rightarrow-\frac{5}{3}< x< -1\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\Delta=\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\-7m^2+38m-15< 0\end{matrix}\right.\) \(\Rightarrow m< \frac{3}{7}\)
\(\Delta'=m^2-m^2+m-1=m-1\ge0\Rightarrow m\ge1\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m+1\end{matrix}\right.\)
\(S=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4m^2-2\left(-m+1\right)\)
\(=4m^2+2m+1\)
Xét \(f\left(m\right)=4m^2+2m+1\) trên \([1;+\infty)\)
\(a=4>0\) ; \(-\frac{b}{2a}=-\frac{1}{4}< 1\Rightarrow f\left(m\right)\) đồng biến trên \([1;+\infty)\)
\(\Rightarrow S_{min}=f\left(m\right)_{min}=f\left(1\right)=7\)
a: \(\text{Δ}=\left(m+3\right)^2-4\left(-2m^2+2\right)\)
\(=m^2+6m+9+8m^2-8\)
=9m^2+6m+1
=(3m+1)^2
Để pt có hai nghiệm pb thì 3m+1<>0
=>m<>-1/3
\(\left\{{}\begin{matrix}x_1+x_2=-m-3\\3x_1+2x_2=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1+3x_2=-3m-9\\3x_1+2x_2=8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_2=-3m-17\\x_1=-m-3+3m+17=2m+14\end{matrix}\right.\)
x1x2=-2m^2+2
=>-2m^2+2=(-3m-17)(2m+14)
\(\Leftrightarrow2m^2-2=\left(3m+17\right)\left(2m+14\right)\)
\(\Leftrightarrow6m^2+42m+34m+238-2m^2+2=0\)
=>4m^2+76m+236=0
hay \(m=\dfrac{-19\pm5\sqrt{5}}{2}\)
b: \(x^2+\left(m-1\right)x+5m-6=0\)
\(\text{Δ}=\left(m-1\right)^2-4\left(5m-6\right)\)
=m^2-2m+1-20m+24
=m^2-22m+25
Để phương trình có hai nghiệm phân biệt thì m^2-22m+25>0
=>\(\left[{}\begin{matrix}m< 11-4\sqrt{6}\\m>11+4\sqrt{6}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=-m+1\\4x_1+3x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1+4x_2=-4m+4\\4x_1+3x_2=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_2=-4m+3\\x_1=-m+1+4m-3=3m-2\end{matrix}\right.\)
x1x2=5m-6
=>(-4m+3)(3m-2)=5m-6
=>-12m^2+8m+9m-6=5m-6
=>-12m^2+17m-5m=0
=>-12m^2+12m=0
=>m=0 hoặc m=1
BĐT Bu nhi a cốp xki :
\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Rightarrow\left(x.1+y.1\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)\)
\(\Rightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)\)
\(\Rightarrow x+y\le\sqrt{2\left(x^2+y^2\right)}\)Nguyễn Thị Thanh Trang
\(P=2018xy+2019\left(x+y\right)\le2018.\frac{x^2+y^2}{2}+2019\sqrt{2\left(x^2+y^2\right)}=2018.\frac{1}{2}+2019\sqrt{2.1}=1009+2019\sqrt{2}\)
Vậy GTLN của P là \(1009+2019\sqrt{2}\) . Dấu \("="\) xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)
a.Ta có : 92.22=(x+356):x+342
\(\Rightarrow92.4=\left(x+356\right):x+342\)
\(\Rightarrow368=\left(x+356\right):x+342\)
\(\Rightarrow\left(x+356\right):x=26\)
\(\Rightarrow x+356=26x\)
\(\Rightarrow x+356-26x=0\)
\(\Rightarrow356-25x=0\)
\(\Rightarrow-25x=356\)
\(\Rightarrow x=-\dfrac{356}{25}\)
vậy \(x=-\dfrac{356}{25}\)