K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

\(1.\)

\(a.\)

\(\dfrac{x}{-150}=-\dfrac{6}{x}\)

\(\Rightarrow x^2=\left(-6\right)\left(-150\right)\)

\(\Rightarrow x^2=900\)

\(\Rightarrow x=\pm30\)

\(2.\)

\(a.\) \(2x=3y;5y=7z\)\(3x-7y+5z=30\)

Ta có : \(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) \(\left(1\right)\)

\(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\) \(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)

\(\Rightarrow\dfrac{x}{21}=2\Rightarrow x=42\)

\(\dfrac{y}{14}=2\Rightarrow y=28\)

\(\dfrac{z}{10}=2\Rightarrow z=20\)

Vậy : ..................

11 tháng 11 2021

4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)

Do đó: x=-16; y=-24; z=-30

15 tháng 9 2021

\(2x=3y\text{⇒}\dfrac{x}{3}=\dfrac{y}{2}\text{⇒}\dfrac{x}{21}=\dfrac{y}{14}\)

\(5y=7z\text{⇒}\dfrac{y}{7}=\dfrac{z}{5}\text{⇒}\dfrac{y}{14}=\dfrac{z}{10}\)

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)

⇒x=42,y=28,z=20

15 tháng 9 2021

\(\dfrac{x}{3}=\dfrac{y}{2}\)\(\dfrac{x}{15}=\dfrac{y}{10}\)

\(\dfrac{x}{5}=\dfrac{z}{7}\text{⇒}\dfrac{x}{15}=\dfrac{z}{21}\)

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{21}\)\(\dfrac{x}{15}=\dfrac{2y}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{15}=\dfrac{2y}{20}=\dfrac{x+2y}{15+20}=\dfrac{-112}{35}=\dfrac{-16}{5}\)

⇒x=48,y=32,z=336/5

11 tháng 2 2022

b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)

Đặt \(x=15k;y=20k;z=24k\)

Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)

21 tháng 11 2017

Đặt \(\dfrac{x}{4}=\dfrac{y}{5}=k\)

Ta có: \(\dfrac{x}{4}=k\) \(\Rightarrow\) \(x=4k\) (1)

\(\dfrac{y}{5}=k\) \(\Rightarrow\) \(y=5k\) (2)

Mà theo đề bài ta có \(xy=80\)

Thế (1) và (2) vào: \(4k.5k=80\\\)

\(\Rightarrow20k^2=80\)

\(\Rightarrow k^2=80:20=4\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=2\) hoặc \(k=-2\)

Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}=2\)

\(\dfrac{x}{4}=2\Rightarrow x=2.4=8\)

\(\dfrac{y}{5}=2\Rightarrow x=2.5=10\)

\(\dfrac{x}{4}=\dfrac{y}{5}=-2\)

\(\dfrac{x}{4}=-2\Rightarrow x=\left(-2\right).4=-8\)

\(\dfrac{y}{5}=-2\Rightarrow y=\left(-2\right).5=-10\)

Vậy có 2 cặp \(\left(x,y\right)=\left(8,10\right);\left(-8,-10\right)\)

21 tháng 11 2017

a, Ta có: \(2x=3y;7z=5y\)

\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{2};\dfrac{z}{5}=\dfrac{y}{7}\)

\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

\(\Rightarrow\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)\(3x-7y+5z=30\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.21=42\\y=2.14=28\\z=2.10=20\end{matrix}\right.\)

Vậy \(x=42;y=28;z=20\)

b, Ta có: \(x:y:z=3:5:\left(-2\right)\)

\(\Rightarrow5x:y:3z=15:5:\left(-6\right)\)\(5x-y+3z=-16\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{5x}{15}=\dfrac{y}{5}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5+\left(-6\right)}=\dfrac{-16}{4}=-4\)

\(\Rightarrow\left\{{}\begin{matrix}x=-4.3=-12\\y=-4.5=-20\\z=-4.\left(-2\right)=8\end{matrix}\right.\)

Vậy \(x=-12;y=-20;z=8\)

b: 2x=3y nên x/3=y/2

=>x/21=y/14

5x=7z nen x/7=z/5

=>x/21=z/15

=>x/21=y/14=z/15

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}=\dfrac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot15}=\dfrac{30}{40}=\dfrac{3}{4}\)

Do đó: x=63/4; y=21/2; z=45/4

8 tháng 11 2018

a) Đặt x/3 = y/4 = k ta có: x = 3k và y = 4k
=> x.y = 3k.4k = 12
> 12k² = 12 => k = -1; 1
=> x = 3; y = 4 hoặc x = -3; y = -4
b) Làm tương tự
c) Từ x/2 = y/3 => x/10 = y/15 (1)
Từ y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) ta có: x/10 = y/15 = z/12
Áp dụng t/c dãy tỷ số bằng nhau ta có:
x/10 = y/15 = z/12 = (x + y - z)/(10 + 15 - 12) = 39/13 = 3
Từ x/10 = 3 => x = 30
Từ y/15 = 3 => y = 45
Từ z/12 = 3 => z = 36
d) Làm tương tự c ta có:
Từ x/3 = y/4 => x/9 = y/12 (1)
Từ y/3 = z/5 => y/12 = z/20 (2)
Từ (1) và (2) ta có: x/9 = y/12 = z/20 hay 2x/18 = 3y/36 = z/20
Áp dụng TC DTS BN ta có:
2x/18 = 3y/36 = z/20 = (2x - 3y + z )/(18 - 36 + 20) = 6/2 = 3
Từ 2x/18 = 3 => x = 27
Từ 3y/36 = 3 => y = 36
Từ x/20 = 3 => z = 60
e) Từ 2x = 3y => x/3 = y/2
Từ 5y = 7z => y/7 = z/5 (Quay về VD c,d)
f) Làm tương tự