Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{6n-1}{3n+1}=\frac{2\left(3n+1\right)-3}{3n+1}=2-\frac{3}{3n+1}\)
Để A đạt GTNN thì \(\frac{3}{3n-1}\) phải đạt giá trị lớn nhất
\(\Rightarrow\hept{\begin{cases}\frac{3}{3n-1}>0\\3n-1\text{ đạt giá trị nhỏ nhất}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3n-1>0\\3n\text{ đạt giá trị nhỏ nhất}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}n>\frac{1}{3}\\n\text{ đạt giá trị nhỏ nhất}\end{cases}}\)
Mà n thuộc Z => n = 1
\(\Rightarrow A_{min}=\frac{6.1-1}{3.1+1}=\frac{5}{4}\Leftrightarrow n=1\)
b) Điều kiện để A là phân số:
\(\hept{\begin{cases}6n-1\inℤ\\3n+1\inℤ\\3n+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}n\inℤ\\n\inℤ\\n\ne-\frac{1}{3}\end{cases}}}\)
Mà n thuộc Z => n luôn ≠ \(-\frac{1}{3}\)
Vậy để A là phân số thì n thuộc Z
c) A có giá trị nguyên <=> 6n - 1 chia hết cho 3n + 1
Có: 3n + 1 chia hết cho 3n + 1
=> 6n + 2 chia hết cho 3n + 1
=> 6n + 2 - (6n - 1) chia hết cho 3n + 1
=> 6n + 2 - 6n + 1 chia hết cho 3n + 1
=> 3 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(3) = {-3; -1; 1; 3}
=> 3n thuộc {-4; -2; 0; 2}
Mà n thuộc Z => 3n chia hết cho 3
=> 3n = 0
=> n = 0
Vậy để A thuộc Z thì n = 0
Gọi số đó là abcd
Theo bài cho : abcd x 4 = dcba
=> abcd = dcba : 4
Vì dcba là số có 4 chữ số nên dcba < 10> abcd = dcba : 4 < 10> a ≤≤ 2
Hơn nữa , a phải là chữ số chẵn khác 0 nên a = 2
=> 2bcd x 4 = dcba => d > 2 và kết quả d x 4 có chữ số tận cùng bằng 2
=> d = 8
Vậy ta có: 2bc8 x 4 = 8cb2 => phép nhân 4 x b không có nhớ
Mà theo dấu hiệu chia hết cho 4 => b2 chia hết cho 4 => b có thể bằng 1;3;52;72; 92
=> b chỉ có thể bằng 1
=> 21c8 x 4 = 8c12 => 8000 + 400 + 40c + 32 = 8000 + 100c + 12
=> 420 = 60c => c = 420 : 60 = 7
Vậy số cần tìm là: 2178
a) Gọi số cần tìm là abcd
Nếu nhân số đó vs 4 thì ta dc số ấy viết theo thứ tự ngược lại là:
abcd.4=dcba
=>dcba chia hết cho 4
Vậy a thuộc 0;2;4;6;8} và a<3
=>a=2
dcba=2bcd.4>2000.4=8000
=> d thuộc {8;9}
Mà 4d<10
->d=8
8cd2=2bc8.4
=>8cb2 chia hết cho 4=>b2 chia hết cho 4
=>b thuộc {1;3;5;7;9}
Mà 4b<10
=>b=1
8c12=21c8.4
4c+3 có tận cùng là 1
=> 4c là số chẵn và=8
=>c thuộc {2;7}
Vs c=2: 0 thỏa mãn vì 2128.4e8212
Vs c=7 thỏa mãn vì 2178.4=8712
Vậy abcd=2178
Có 4 cách biểu diễn
5\(^{12}\) = \(\left(5^2\right)^6\) = \(\left(5^3\right)^4\) = \(\left(5^4\right)^3\) = \(\left(5^6\right)^2\)
HT
Ta có :
5m.n = 512
=> m . n = 12
=> m và n là các cặp ước của 12 mà m và n khác 1
=> m và n cũng khác 12 mà m và n là các số tự nhiên
=> ( m , n ) ∈ { ( 2 , 6 ) ; ( 3 , 4 ) ; ( 4 , 3 ) ; ( 6 , 2 ) }
Như vậy ta sẽ có 4 cách viết
a)Xét \(\Delta ABI\)vuông tại A và \(\Delta KBI\)vuông tại K ,có:
\(\widehat{ABI}=\widehat{KBI}\)(do BI là phân giác của \(\widehat{ABC}\))
\(BI:chung\)
\(\Rightarrow\Delta ABI=\Delta KBI\left(ch.gn\right)\)
b)Vì \(\Delta ABI=\Delta KBI\left(ch.gn\right)\)
\(\Rightarrow\hept{\begin{cases}AB=KB\\AI=BI\end{cases}}\)(2 cạnh tương ứng)
\(\Rightarrow B,I\)thuộc đường trung trực của AK
hay BI là đường trung trực của AK
c)Vì BI là phân giác của \(\widehat{ABC}\)
\(\Rightarrow\)\(\widehat{ABI}=\widehat{KBI}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0=\widehat{ACB}\)(do \(\Delta ABC\)vuông tại A)
\(\Rightarrow\Delta BIC\)cân tại I
mà IK là đường cao
\(\Rightarrow IK\)là đường trung tuyến của \(\Delta BIC\)
\(\Rightarrowđpcm\)
//Sorry bạn nha .Hôm qua chỗ mình mưa to quá lại còn có sấm sét nữa nên mình không giải tiếp được cho bạn .
c)Vì \(\Delta BIC\)cân tại I nên IB=IC
Xét \(\Delta ABI\)vuông tại A ,có:
\(IB\)là cạnh huyền
\(\Rightarrow AB< IB=IC\)
d)Vì \(\Delta ABC\)vuông tại A \(\Rightarrow AB\perp AC\)
Xét \(\Delta BIC\),có:
BA,IK,CF là các đường cao
\(\Rightarrow BA,IK,CF\)đồng quy tại trực tâm của \(\Delta BIC\)
Trả lời :
Ta có thể tách thành tổng của 3 số có cùng mẫu :
\(\frac{-8}{15}=\frac{-3}{15}+\frac{-1}{15}+\frac{-4}{15}\)
\(.....................\)
tổng của 2 số ht âm mà bạn là 3 số rồi
M P N D E H K
a) Xét tam giác PMD và tam giác EMD, ta có :
PMD = EMD ( gt )
MD chung
MP = ME ( gt )
=> Tam giác PMD bằng Tam giác EMD ( c . g . c )
b) Xét tam giác MPK và tam giác MEK, ta có :
PMD = EMD ( gt )
MK chung
MP = ME ( gt )
=> Tam giác MPK = Tam giác MEK ( c . g .c )
=> KP = KE ( 1 )
=> MKE = MKP = 900 ( 2 )
Từ 1 và 2 suy ra MDlaf đường trung trực đoạn thẳng PE
c) Ta có MDN = MDH { ( 1800 - PDE ) + MDE }
Xét tam giác MHD và tam giác MND, ta có :
HMD = NMD ( gt )
MD chung
MDN = MDH ( gt )
=> Tam giác MHD bằng tam giác MND ( g . c .g )
=> HD = DN
d)
Bài 1:
60= 22.3.5 ; 88 = 23.11
ƯCLN(60;88)= 22 = 4
ƯC(60;88)=Ư(4)={1;2;4}
Bài 2:
24= 23.3 ; 30=2.3.5 ; 40 = 23.5
BCNN(24;30;40)=23.3.5= 120
BC(24;30;40)=B(120)={0;120;240;360;...}