Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-5x+7+2m=0\Leftrightarrow x^2-5x+7=-2m\)
Xét hàm \(f\left(x\right)=x^2-5x+7\) trên \(\left[1;5\right]\)
\(-\dfrac{b}{2a}=\dfrac{5}{2}\in\left[1;5\right]\)
\(f\left(1\right)=3\) ; \(f\left(\dfrac{5}{2}\right)=\dfrac{3}{4}\) ; \(f\left(5\right)=7\)
\(\Rightarrow\) Pt đã cho có 2 nghiệm pb thuộc đoạn đã cho khi và chỉ khi:
\(\dfrac{3}{4}< -2m\le3\)
\(\Leftrightarrow-\dfrac{3}{2}\le m< \dfrac{3}{8}\)
Cả 4 đáp án đều sai là sao ta?
a: \(A\cap B=\left(-3;1\right)\)
\(A\cup B\)=[-5;4]
A\B=[1;4]
\(C_RA\)=R\A=(-∞;-3]\(\cap\)(4;+∞)
b: C={1;-1;5;-5}
\(B\cap C=\left\{-5;-1\right\}\)
Các tập con là ∅; {-5}; {-1}; {-5;-1}
Xét phương trình hoành độ giao điểm: x2 + x+ 2 = ax + 1
x2 + (1 – a) x + 1 = 0
Để (P) tiếp xúc với (d) thì phương trình có nghiệm kép hay
Chọn A.
a) Với m = 1 phương trình trở thành:
x 2 + 4x + 4 = 0 ⇔ (x + 2 ) 2 = 0 ⇔ x = -2
Vậy x = -2
b) Ta có: Δ' = m 2 - 5m + 4
Phương trình có hai nghiệm phân biệt
⇔ Δ' > 0 ⇔ m 2 - 5m + 4 > 0
Do x1 < x2 < 1
Xét phương trình hoành độ giao điểm:
x2 – 2x + m – 1 = 0 tương đương (x – 1)2 = 2 – m (1)
Để parabol không cắt trục Ox thì phương trình (1) vô nghiệm hay 2 – m < 0 hay m > 2
Chọn B.