K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\) 2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2 3. bất phương trình nào sau đây tương đương với...
Đọc tiếp

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số

A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\)

2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số

A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2

3. bất phương trình nào sau đây tương đương với bất phương trình x+5>0

A. (x-1)2 (x+5) > 0 B. x2 (x+5) >0

C. \(\sqrt{x+5}\left(x+5\right)\)> 0 D. \(\sqrt{x+5}\left(x-5\right)\)>0

4. bất phương trình ax+b > 0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a\ne0\\b=0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

5.bất phương trình ax+b>0 có tập nghiệm R khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

6.bất phương trình ax+b \(\le\)0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

7.tập nghiệm S của bất phương trình \(5x-1\ge\frac{2x}{5}+3\)

A. R B. (-∞; 2) C. (-\(\frac{5}{2}\); +∞) D. \([\frac{20}{23}\); +∞\()\)

MONG MỌI NGƯỜI GIẢI CHI TIẾT GIÚP EM Ạ TvT

0
1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10 A.4 B.5 C.9 D.10 2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\) A. 5 B.6 C.21 D.40 3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ 4. Tập...
Đọc tiếp

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10

A.4 B.5 C.9 D.10

2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)

A. 5 B.6 C.21 D.40

3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x

A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ

4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}< \left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)

A. (-∞;3) B. (3; +∞) C. [3; +∞) D. (-∞; 3]

5. tổng các nghiệm nguyên của bất phương trình \(\frac{x-2}{\sqrt{x-4}}\le\frac{4}{\sqrt{x-4}}\) bằng

A. 15 B. 26 C. 11 D. 0

6. bất phương trình (m2- 3m )x + m < 2- 2x vô nghiệm khi

A. m ≠1 B. m≠2 C. m=1 , m=2 D. m∈ R

7. có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 -m )x < m vô nghiệm

A. 0 B.1 C.2 D. vô số

8. gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2 -m)x + m< 6x -2 vô nghiệm. tổng các phần tử trong S là

A. 0 B.1 C.2 D.3

9. tìm tất cả các giá trị thực của tham số m để bất phương trình m2( x-2) -mx +x+5 < 0 nghiệm đúng với mọi x∈ [-2018; 2]

A. m< \(\frac{7}{2}\) B. m=​ \(\frac{7}{2}\) C. m > \(\frac{7}{2}\) D. m ∈ R

10. tìm tất cả các giá trị thực của tham số m để bất phương trình m2 (x-2) +m+x ≥ 0 có nghiệm x ∈ [-1;2]

A. m≥ -2 B. m= -2 C. m ≥ -1 D. m ≤ -2

0
Câu 1: Tọa độ giao điểm của (P): \(y=x^{^{ }2}-4x\) với đường thẳng \(d:\) \(y=-x-2\) là: A. \(M\left(-1;-1\right),N\left(-2;0\right)\) B. \(M\left(1;-3\right),N\left(2;-4\right)\) C. \(M\left(0;-2\right),N\left(2;-4\right)\) D. \(M\left(-3;1\right),N\left(3;-5\right)\) Câu 2: Đường thẳng nào sau đây tiếp xúc với (P): \(y=2x^2-5x+3\)? A. \(y=x+2\) B. \(y=-x-1\) C. \(y=x+3\) D. \(y=-x+1\) Câu 3: Parabol (P): \(y=x^2+4x+4\) có số điểm chung với trục...
Đọc tiếp

Câu 1: Tọa độ giao điểm của (P): \(y=x^{^{ }2}-4x\) với đường thẳng \(d:\) \(y=-x-2\) là:

A. \(M\left(-1;-1\right),N\left(-2;0\right)\)

B. \(M\left(1;-3\right),N\left(2;-4\right)\)

C. \(M\left(0;-2\right),N\left(2;-4\right)\)

D. \(M\left(-3;1\right),N\left(3;-5\right)\)

Câu 2: Đường thẳng nào sau đây tiếp xúc với (P): \(y=2x^2-5x+3\)?

A. \(y=x+2\)

B. \(y=-x-1\)

C. \(y=x+3\)

D. \(y=-x+1\)

Câu 3: Parabol (P): \(y=x^2+4x+4\) có số điểm chung với trục hoành là:

A. 0

B. 1

C. 2

D. 3

Câu 4: Giao điểm của hai parabol \(y=x^2-4\)\(y=14-x^2\) là;

A. \(\left(2;10\right)\)\(\left(-2;10\right)\)

B. \(\left(\sqrt{14};10\right)\)\(\left(-14;10\right)\)

C. \(\left(3;5\right)\)\(\left(-3;5\right)\)

D. \(\left(\sqrt{18};14\right)\)\(\left(-\sqrt{18};14\right)\)

Câu 5:Cho parabol (P): \(y=x^2-2x+m-1\). Tìm tất cả các giá trị thực của m để parabol không cắt Ox.

A. \(m< 2\)

B. \(m>2\)

C. \(m\ge2\)

D. \(m\le2\)

1
26 tháng 10 2018

Câu 1:

Phương trình hoành độ giao điểm của (P) và (d):

\(x^2-4x=-x-2\)

\(x^2-3x+2=0\)

\(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Với x= 2 ⇒ y=-2 -2 = -4

Với x= 1 ⇒ y = -1 -2 = -3

Vậy chọn B: M( 1; -3) và N(2;-4)

Câu 2:

Vì (d) tiếp xúc với (P)

nên Δ = 0 ⇒ phương trình có một nghiệm kép

Vậy chọn D: y= -x +1

Câu 3:

(P) : y =\(x^2+4x+4\)

Để (P) có điểm chung với trục hoành ⇔ y =0

Vậy chọn B : 1

Câu 4:

Phương trình hoành độ giao điểm của hai parabol:

\(x^2-4=14-x^2\)

\(2x^2-18=0\)

\(\left[{}\begin{matrix}x=3\Rightarrow y=14-3^2=5\\x=-3\Rightarrow y=14-\left(-3\right)^2=5\end{matrix}\right.\)

Vậy chọn C : (3;5) và (-3;5)

Câu 5: (P) : y= \(x^2-2x+m-1\)

Để (P) không cắt Ox

⇔ Δ < 0

\(b^2-4ac< 0\)

\(\left(-2\right)^2-4\left(m-1\right)< 0\)

⇔ 4 - 4m +4 < 0

⇔ -4m < -8

⇔ m > 2

Vậy chọn B : m> 2

6 tháng 4 2017

1) b)

Phương trình trên tương đương

\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}-\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{x^2-2x-33}{\left(x+3\right)\left(x+5\right)}\)

ĐKXĐ: \(x\ne-3;x\ne-4;x\ne-5\)

\(\dfrac{x+3-x-5}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}=\dfrac{\left(x^2-2x-33\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}\)

\(-2=x^3+4x^2-2x^2-8x-33x-132\)

\(x^3+2x^2-41x-130=0\)

\(x^3+5x^2-3x^2-15x-26x-130=0\)

\(x^2\left(x+5\right)-3x\left(x+5\right)-26\left(x+5\right)=0\)

\(\left(x^2-3x-26\right)\left(x+5\right)=0\)

\(\Rightarrow x=-5\)(Loại)

\(x^2-3x-26=0\)

Phân tích thành nhân tử cũng được nhưng nếu box lớp 10 thì chơi kiểu khác

\(\Delta=\left(-3\right)^2-4.1.\left(-26\right)=113\)

\(x_1=\dfrac{3-\sqrt{113}}{2}\)

\(x_2=\dfrac{3+\sqrt{113}}{2}\)

Phương trình có 2 nghiệm trên

6 tháng 4 2017

5) 0<a<b, ta có: a<b

<=> a.a<a.b

<=>a2<a.b

<=>\(a< \sqrt{ab}\)(1)

- BĐT Cauchy:

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) khi \(a\ge0;b\ge0\)

\(\Leftrightarrow\sqrt{ab}\le\dfrac{a+b}{2}\)

Dấu = xảy ra khi a=b=0 mà 0<a<b

=> \(\sqrt{ab}< \dfrac{a+b}{2}\)(2)

- 0<a<b, ta có: a<b<=> a+b<b+b

\(\Leftrightarrow\)\(\dfrac{a+b}{2}< \dfrac{b+b}{2}\)

\(\Leftrightarrow\dfrac{a+b}{2}< b\left(3\right)\)

Từ (1), (2), (3), ta có đpcm

24 tháng 5 2018

Ta có \(\dfrac{a^2}{a+b^2}=a-\dfrac{ab^2}{a+b^2}\ge a-\dfrac{ab^2}{2b\sqrt{a}}=a-\dfrac{ab}{2\sqrt{a}}\)

Thiết lập tương tự và thu lại ta có :

\(VT\ge3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\)

Xét \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}=\sqrt{\dfrac{a^2b^2}{4a}}+\sqrt{\dfrac{b^2c^2}{4b}}+\sqrt{\dfrac{a^2c^2}{4c}}\)

Áp dụng bđt Cauchy ta có \(\sqrt{\dfrac{a^2b^2}{4a}}=\sqrt{\dfrac{ab}{2a}.\dfrac{ab}{2}}\le\dfrac{\dfrac{b}{2}+\dfrac{ab}{2}}{2}\)

Thiết lập tương tự và thu lại ta có :

\(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{\dfrac{a+b+c}{2}+\dfrac{ab+bc+ac}{2}}{2}=\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\left(1\right)\)

Theo hệ quả của bđt Cauchy ta có \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=3\)

\(\Rightarrow\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\le\dfrac{\dfrac{3}{2}+\dfrac{3}{2}}{2}=\dfrac{3}{2}\left(2\right)\)

Từ ( 1 ) và ( 2 ) ta có \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{3}{2}\)

\(\Rightarrow3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)

\(\Rightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)

Dấu '' = '' xảy ra khi \(a=b=c=1\)

25 tháng 5 2018

Thanks you.!!!hiuhiu