\(\le\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2

a; CM: A = n(n + 1).(2n + 1) ⋮ 6

A = n(n + 1).(2n + 1)

+ Ta có: n + 1 - n = (n - n) + 1 = 1 (là số lẻ)

Vậy n + 1 và n là hai số khác tính chẵn lẻ, nên một trong hai số nhất định phải có một số là số chẵn mà số chẵn thì luôn chia hết cho 2. Vậy:

A ⋮ 2 ∀ n ∈ N (1)

+ TH1: n = 3k ta có: n ⋮ 3

+ TH2: n = 3k + 1 ta có:

2n + 1 = 2.(3k + 1) + 1= 6k + 2 + 1 = 6k + (2 + 1) = 6k + 3 ⋮ 3

TH3: n = 3k + 2 ta có:

n + 1 = 3k + 2 + 1 = 3k + (2+ 1) = 3k + 3 ⋮ 3

Từ các trường hợp 1; 2; 3 ta có: A ⋮ 3 ∀ n (2)

Kết hợp (1) và (2) ta có: A ⋮ 2 và 3 ⇒ A ∈ BC(2; 3)

2 = 2; 3 = 3; BCNN(2; 3) = 2.3 = 6

Vậy A ∈ B(6) hay A ⋮ 6 ∀ n (đpcm)


17 tháng 6 2017

a, Ta có:

\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)

\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)

Ta lại có:

\(9^n-2^n⋮9-2=7;2n.7⋮7\)

\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)

24 tháng 2 2020

Do n vừa chi hết cho 2 vừa chia hết cho 5 nên n \(⋮\)10

Vậy tập hợp các sô tự nhiên n là:

n\(\in\){40;50;60}

24 tháng 2 2020

N vừa chia hết cho 2 vừa chia hết cho 5

=> N chia hết cho 10

Mà 32≤n≤62

=> N thuộc tập hợp { 40;50;60}

11 tháng 1 2019

1) Ta có: 3n2+3n

= 3(n2+n) \(⋮\) 3

Vì n là STN nên:

TH1: n là số tự nhiên lẻ.

\(\Rightarrow\)n2 sẽ lẻ \(\Rightarrow\) n2+n bằng lẻ cộng lẻ và bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2 \(\Rightarrow\) 3(n2+n) \(⋮\) 2

\(\Rightarrow\) 3n2+3n \(⋮\) 2

Vì 3n2+3n chia hết cho 3 và cũng chia hết cho 2 nên số đó chia hết cho 6.

TH2: n là số tự nhiên chẵn.

\(\Rightarrow\) n2 sẽ chẵn \(\Rightarrow\) n2+n bằng chẵn cộng chẵn bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2\(\Rightarrow\)

3(n2+n) \(⋮\) 2\(\Leftrightarrow\) 3n2+3n \(⋮\) 2

Vì 3n2+3n chia hết cho 3 và chia hết cho 2 nên số đó chia hết cho 6.

Vậy với mọi trường hợp số tự nhiên thì 2n2+3n đều chia hết cho 6. Vậy với mọi n là số tự nhiên thì 2n2+3n sẽ chia hết cho 6 (đpcm)

23 tháng 8 2022

3)

Gọi 5 số tự nhiên liên tiếp là k; k+1; k+2; k+3; k+4

\RightarrowTích của chúng là k(k+1)(k+2)(k+3)(k+4)

Trong 5 số tự nhiên liên tiếp có ít nhất 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp 8\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮88(1)

Trong 5 số tự nhiên liên tiếp có ít nhất 1 số ⋮55\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮55                                                                 (2)

Trong tích 5 số tự nhiên liên tiếp có tích của 3 số tự nhiên liên tiếp mà tích của 3 số tự nhiên liên tiếp⋮3\Rightarrow3k(k+1)(k+2)(k+3)(k+4)⋮33                                                                                                                                                                                           (3)

Từ (1),(2),(3) và ƯCLN(3;5;8)=1\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮3.5.83.5.8=120

Vậy tích của 5 số tự nhiên liên tiếp ⋮120120

a) n = 4 ; 

b) n = 4 ; 

c) ???

d) n = 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9

9 tháng 8 2015

\(n\in\left\{2000\right\}\)

15 tháng 6 2017

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm