\(1.\) Tìm số tự nhiên n để phân số sau tối giản:

                                <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

Gọi d thuộc Z. Ta thấy n +13 chia hết cho d , n-2 chia hết cho d. Vậy d là ước chung của n +13 và n -2..

>>  N +13 - N -2 SẼ CHIA HẾT CHO d.

>> 11 sẽ chia hết cho d.

>> d = 1 hoặc 11. 

Tìm n mà bạn

10 tháng 6 2015

umk đây này

Phân số đã cho có dạng: a/2+a+n với a=1,2,3,...,2004.

UCLN(a;2+a+n)=1 do đó a;2+a+n nguyên tố cùng nhau. Do vậy 2+n là số nguyên tố với n nhỏ nhất

Do đó 2+n=2003 (Vì 2003 là số nguyên tố)

Vậy n=2001

10 tháng 6 2015

bài này hình như có bạn hỏi rùi, n = 2001

17 tháng 3 2019

Đặt d là ước nguyên tố của 2n - 1 và 9n + 4

=> 2n - 1 chia hết cho d ; 9n + 4 chia hết cho d

2n - 1 chia hết cho d => 9( 2n - 1 ) chia hết cho d => 18n - 9 chia hết cho d

9n + 4 chia hết cho d => 2( 9n + 4 ) chia hết cho d => 18n + 8 chia hết cho d

=>( 18n + 8 ) - ( 18n - 9 ) chia hết cho d

=>18n + 8 - 18n + 9 chia hết cho d

=>   17 chia hết cho d => d thuộc ước của 17 mà ước của 17 là 1;17

10 tháng 2 2018

Mình sẽ tách ra làm từng ý, bạn nhớ k cho mình nhé!

a) Gọi d là ƯCLN ( 2n + 3; 4n + 1 )

Ta có: 2n + 3 chia hết cho d

=> 2 ( 2n + 3 ) chia hết cho d

=> 4n + 6 chia hết cho d

Mà: 4n + 1 chia hết cho d

=> ( 4n + 6 ) - ( 4n + 1 ) chia hết cho d

=> 5 chia hết cho d

=> d thuộc Ư ( 5 )

Giả sử phân số không tối giản:

=> 2n + 3 chia hết cho 5

=> 2n + 3 + 5 chia hết cho 5

=> 2n + 8 chia hết cho 5

=> 2 ( n + 4 ) chia hết cho 5

Vì ƯCLN ( 2; 5 ) = 1

=> n + 4 chia hết cho 5

=> n + 4 = 5k ( k thuộc N* )

=> n = 5k - 4

Vậy với n khác 5k - 4 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.

10 tháng 2 2018

b) Gọi d = ƯCLN ( 3n + 2; 7n + 1 ) 

Ta có: 3n + 2 chia hết cho d => 7 ( 3n + 2 ) chia hết cho d => 21n + 14 chia hết cho d ( 1 )

          7n + 1 chia hết cho d => 3 ( 7n + 1 ) chia hết cho d => 21n + 3  chia hết cho d ( 2 )

Có: ( 1 ) chia hết cho d; ( 2 ) chia hết cho d

=> ( 1 ) - ( 2 ) chia hết cho d

=> 11 chia hết cho d

=> d thuộc Ư ( 11 )

Giả sử phân số không tối giản:

=> 7n + 1 chia hết cho 11

=> 7n + 1+ 55 chia hết cho 11

=> 7n + 56 chia hết cho 11

=> 7 ( n + 8 ) chia hết cho 11

Vì ƯCLN ( 7; 11 ) = 1

=> n + 8 chia hết cho 11

=> n + 8 = 11k ( k thuộc N* )

=> n = 11k - 8

Vậy với n khác 11k - 8 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.

Mình làm cho bạn 2 câu, câu còn lại tương tự, bạn tự làm ha! ^v^

30 tháng 3 2017

bài này mk học rồi

22 tháng 5 2016

2006 = 2.17.59
Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006
Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.
Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59
suy ra n(n+1)...(n+9) chia hết cho 2006

* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.
- Đặt S = 1/50 + 1/51 + ... + 1/59
1/50 + 1/51 + ... + 1/58 = A/B (trong đó B ko chia hết 59)
suy ra: S = A/B + 1/59 = (59A + B)/59B = p/q
hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)
Do B ko chia hết 59 suy ra q chia hết 59.

- Đặt 1/50 + 1/52 + ... + 1/58 = C/D ta cũng có D ko chia hết cho 17
Chứng minh tương tự suy ra q chia hết cho 59, 17, 2
suy ra (đpcm

2006 = 2.17.59
Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006
Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.
Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59
suy ra n(n+1)...(n+9) chia hết cho 2006

* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.
- Đặt S = 1/50 + 1/51 + ... + 1/59
1/50 + 1/51 + ... + 1/58 = A/B (trong đó B ko chia hết 59)
suy ra: S = A/B + 1/59 = (59A + B)/59B = p/q
hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)
Do B ko chia hết 59 suy ra q chia hết 59.

- Đặt 1/50 + 1/52 + ... + 1/58 = C/D ta cũng có D ko chia hết cho 17
Chứng minh tương tự suy ra q chia hết cho 59, 17, 2
suy ra (đpcm

3 tháng 8 2017

Ta có :

\(\frac{n+19}{n-2}=\frac{n-2+21}{n-2}=1+\frac{21}{n-2}\)

để phân số trên tối giản thì \(\frac{21}{n-2}\in Z\)

\(\Rightarrow21⋮n-2\)

\(\Rightarrow n-2\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

\(\Rightarrow n\in\left\{3;1;5;-1;9;-5;23;-19\right\}\)