K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2018

\(\dfrac{\left(13\dfrac{1}{4}-1\dfrac{5}{27}-10\dfrac{5}{6}\right).230\dfrac{1}{25}+46\dfrac{3}{4}}{\left(1\dfrac{3}{7}+\dfrac{10}{3}\right):\left(12\dfrac{1}{3}-14\dfrac{2}{7}\right)}\)

\(=\dfrac{1\dfrac{25}{108}.230\dfrac{1}{25}+46\dfrac{3}{4}}{4\dfrac{16}{21}:\left(-1\dfrac{20}{21}\right)}=\dfrac{330\dfrac{1}{25}}{-2\dfrac{18}{41}}=-135,3164\)

14 tháng 12 2017

1. A = \(\dfrac{3n-7}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{-7}{n-1}=3+\dfrac{-7}{n-1}\)

Tại giá trị \(A\notin Z,3\in Z\)\(\Rightarrow\dfrac{-7}{n-1}\in Z\)\(\Rightarrow n-1\inƯ\left(-7\right)\) với \(x\ne1\) (mẫu sẽ có giá trị là 0 nếu x = 1)

Tại \(n-1=7\)\(\Leftrightarrow n=7+1=8\)

Tại \(n-1=-7\Leftrightarrow n=-7+1=-6\)

Tại \(n-1=1\Leftrightarrow n=1+1=2\)

Tại \(n-1=-1\Leftrightarrow n=-1+1=0\)

14 tháng 12 2017

2. B = \(\dfrac{4n+1}{2n-3}=\dfrac{4n+6}{2n-3}+\dfrac{-5}{2n-3}=2+\dfrac{-5}{2n-3}\)

Tại giá trị \(B\in Z,2\in Z\)\(\Rightarrow\dfrac{-5}{2n-3}\in Z\)\(\Rightarrow2n-3\inƯ\left(-5\right)\) với \(x\ne\dfrac{3}{2}\)

Tại \(2n-3=5\Leftrightarrow2n=8\Leftrightarrow n=4\)

Tại \(2n-3=-5\Leftrightarrow2n=-2\Leftrightarrow n=-1\)

Tại \(2n-3=1\Leftrightarrow2n=4\Leftrightarrow n=2\)

Tại \(2n-3=-1\Leftrightarrow2n=2\Leftrightarrow n=1\)

Câu 3: 

a: Theo đề ta có: P(2014)=0

\(\Leftrightarrow2014^2-2014k+2014=0\)

=>4058210-2014k=0

=>k=2015

Vậy: \(P\left(x\right)=x^2-2015x+2014\)

b: \(P\left(1\right)=1-2015+2014=0\)

nên x=1 là nghiệm của P(x)

a: \(A=3^n\cdot27+5^n\cdot125+3^n\cdot3+5^n\cdot25\)

\(=3^n\cdot30+5^n\cdot150\)

Vì \(3^n\cdot30\) chia 60 dư 30(do 3n là số lẻ)

và \(5^n\cdot150\) chia 60 dư 30(do 5n là số lẻ)

nên A chia hết cho 60

c: a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a-b}{c-d}\right)^{2003}=\left(\dfrac{bk-b}{dk-d}\right)^{2003}=\left(\dfrac{b-1}{d-1}\right)^{2003}\)

\(\dfrac{a^{2005}+b^{2005}}{c^{2005}+d^{2005}}=\dfrac{b^{2005}k^{2005}+b^{2005}}{d^{2005}k^{2005}+d^{2005}}=\dfrac{b^{2005}}{d^{2005}}\)

=>Đề sai rồi bạn

6 tháng 4 2017

Bài 1: Vì: 2x^3 - 1 = 15
=> 2x^3 = 16
=> x^3 = 8
=> x = 2 (1)
Ta có:
* (x + 16)/9 = (y - 25)/16
<=> (2 + 16)/9 = (y - 25)/16
<=> 18/9 = (y - 25)/16
<=> 2 = (y - 25)/16
<=> y - 25 = 16.2 = 32
=> y = 32+25 = 57 (2)

* (x + 16)/9 = (z + 9)/25
<=> (2 + 16)/9 = (z + 9)/25
<=> 2 = (z + 9)/25
<=> z + 9 = 25.2 = 50
=> z = 50 - 9 = 41 (3)
Từ (1), (2) và (3) => x + y + z = 2 + 57 + 41 = 100

8 tháng 4 2017

Bài 2:

c) vì a,b,c là độ dài các cạnh của tam giác:

\(\Rightarrow\left\{{}\begin{matrix}a< b+c\\b< a+c\\c< a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b+c}< 1\\\dfrac{b}{a+c}< 1\\\dfrac{c}{a+b}< 1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\\\dfrac{b}{a+c}< \dfrac{2b}{a+b+c}\\\dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\end{matrix}\right.\)

\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< \dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) (đpcm)

6 tháng 12 2017

Ta có: \(\widehat{A}=\dfrac{2}{5}\widehat{B}=\dfrac{1}{4}\widehat{C}\Rightarrow\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{\dfrac{1}{\dfrac{2}{5}}}}=\widehat{\dfrac{C}{\dfrac{1}{\dfrac{1}{4}}}}\)

\(\Rightarrow\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{\dfrac{5}{2}}}=\widehat{\dfrac{C}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\widehat{\dfrac{A}{1}}=\dfrac{\widehat{B}}{\dfrac{5}{2}}=\widehat{\dfrac{C}{4}}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+\dfrac{5}{2}+4}=\dfrac{180}{9}=20\)

\(\Rightarrow\widehat{A}=20^o\)

\(\widehat{\dfrac{B}{\dfrac{5}{2}}}=20\Rightarrow\widehat{B}=50^o\)

\(\widehat{\dfrac{C}{4}}=20\Rightarrow\widehat{C}=80^o\)

Vậy............................

6 tháng 4 2017

bài 1 dễ mà bn .bn chỉ cần tính x rùi thay vào thui mà

6 tháng 4 2017

Thì bài 1 mình bt r. Mình chỉ hỏi bài 2,3 thôi

20 tháng 12 2018

(\(\dfrac{3}{5}\) - x).(

10 tháng 12 2022

(3/5-x)(2/5-x)>0

=>(x-3/5)(x-2/5)<0

=>2/5<x<3/5