K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2023

a)nếu p=2 thì :

p+10=2+10=12 là hợp số(loại)

nếu p=3 thì:

p+10=3+10=13 là số nguyên tố 

p+14=3+14=17 là số nguyên tố

(thỏa mãn)

nếu p>3 thì:

p sẽ bằng 3k+1 hoặc 3k+2

trường hợp 1:p=3k+1

nếu p=3k+1 thì:

p+14=3k+1+14=3k+15=3 nhân (k+5)chia hết cho 3(3 chia hết cho3) là hợp số(loại)

trường hợp 2:p=3k+2

nếu p=3k+2 thì:

p+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)

vậy nếu  p>3 thì không có giá trị nào thỏa mãn

vậy p=3

b)nếu q=2 thì :

q+10=2+10=12 là hợp số(loại)

nếu q=3 thì:

q+2=3+2=5 là số nguyên tố 

q+10=3+10=13 là số nguyên tố

(thỏa mãn)

nếu q>3 thì:

q sẽ bằng 3k+1 hoặc 3k+2

trường hợp 1:q=3k+1

nếu q=3k+1 thì:

q+2=3k+1+2=3k+3=3 nhân (k+1)chia hết cho 3(3 chia hết cho3) là hợp số(loại)

trường hợp 2:q=3k+2

nếu q=3k+2 thì:

q+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)

vậy nếu  q>3 thì không có giá trị nào thỏa mãn

vậy q=3

19 tháng 12 2021

a.\(p\in\left\{3\right\}\)
b.\(q\in\left\{3\right\}\)

19 tháng 12 2021

a: p=3

b: p=3

20 tháng 12 2021

a: p=3

b: q=3

14 tháng 8 2016

a)-     nếu p= 2 => p là HS (loại)

   -    nếu p= 3=> p+2= 3+ 2= 5 ( SNT) => t/m

                      p+4= 3+4= 7  (SNT) => t/m

  -    Nếu p nguyên tố> 3 => P:3 dư1 => P= 3k+1

                                        P:3 dư 2 => P= 3k +2

       +   P= 3k +1 =>p+2 = (3k+1)+2 =3k+3 chia hết cho 3  ( t/m)

       + P= 3k +2 =>p+4 = (3k+2)+ 4 =3k + 6 chia hết cho 3   (t/m )

                    Vậy P=3

25 tháng 9 2016

Tìm số nguyên tố p sao cho

A. p, p+2, p+4 là các số nguyên tố

B. p+10,p+14 là các số nguyên tố

C. p+2,p+6,p+8,p+14 là các số nguyên tố

a)-     nếu p= 2 => p là HS (loại)

   -    nếu p= 3=> p+2= 3+ 2= 5 ( SNT) => t/m

                      p+4= 3+4= 7  (SNT) => t/m

  -    Nếu p nguyên tố> 3 => P:3 dư1 => P= 3k+1

                                        P:3 dư 2 => P= 3k +2

       +   P= 3k +1 =>p+2 = (3k+1)+2 =3k+3 chia hết cho 3  ( t/m)

       + P= 3k +2 =>p+4 = (3k+2)+ 4 =3k + 6 chia hết cho 3   (t/m )

                    Vậy P=3

21 tháng 12 2021

p=3

21 tháng 12 2021

3 nhé

 

21 tháng 10 2016

Xét trường hợp p=2=> p+10=12 ( ko phải là số nguyên tố)

Xét trường hợp p=3 => p+10= 13; p+14=17 ( đều là số nguyên tố)

Xét p>3 => p có 1 trong 2 dạng 3k+1 và 3k-1

+, Với p= 3k+1=>p+14=3k+1+14=3k+15 chia hết cho 3

+, Với p= 3k-1=> p-10= 3k-1+10= 3k+9 chia hết cho 3

Vậy p= 3 thì p+10 và p+14 là các số nguyên tố

Mk ms lm đc câu a, còn b để mk nghĩ tiếp

k mk nka

22 tháng 11 2021

ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc 

22 tháng 10 2016

Với P bằng 2→p+10=12(k/tm)

Với P=3→p+10=13, P+14=17.vay P=3

Đối với các số>3.ta đuợc 3.k+1 hoặc 3.k+2

Với 3.k+1→p+14=3.k+1+14=3k+15\(⋮\)3.vay 3k+1(k/tm)

Với 3k+2→p+10=3k+2+10=3k+12 chia hết cho 3(k/tm)

B làm giống ơ trên

23 tháng 10 2016

a) do p là số nguyên tố =>p \(\ge\)2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài

 

26 tháng 7 2023

Bài 1 :

a) \(123456789+729=\text{123457518}⋮2\)

⇒ Số trên là hợp số

b)\(5.7.8.9.11-132=\text{27588}⋮2\)

⇒ Số trên là hợp số

Bài 2 :

a) \(P+2\&P+4\) ;à số nguyên tố

\(\Rightarrow\dfrac{P+2}{P+4}=\pm1\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{P+2}{P+4}=1\\\dfrac{P+2}{P+4}=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}P+2=P+4\\P+2=-P-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0.P=2\left(x\in\varnothing\right)\\2.P=-6\end{matrix}\right.\)

\(\Rightarrow P=-3\)

Câu b tương tự

 

26 tháng 7 2023

a,123456789+729=123457518(hợp số)

b,5x7x8x9x11-132=27588(hợp số)

Bài 2,

a,Nếu P=2=>p+2=4 và p+4=6 (loại)

Nếu P=3=>p+2=5 và p+4=7(t/m)

P>3 => P có dạng 3k+1 hoặc 3k+2(k ϵn,k>0)

Nếu p=3k+1=>p+2=3k+3 ⋮3( loại)

Nếu p=3k+2=>p+4=3k+6⋮3(loại)

Vậy p=3 thỏa mãn đề bài

b,Nếu p=2=>p+10=12 và p+14=16(loại)

Nếu p=3=>p+10=13 và p+14=17(t/m)

Nếu p >3=>p có dạng 3k+1 hoặc 3k+2

Nếu p=3k+1=>p+14=3k+15⋮3(loại)

Nếu p=3k+2=>p+10=3k+12⋮3(loại)

Vậy p=3 thỏa mãn đề bài.