Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy
Giải:
Đặt \(A=p^{q-1}+q^{p-1}-1\)
Do \(p,q\) là các số nguyên tố khác nhau nên \(\left(p,q\right)=1\)
Áp dụng định lý Fecma nhỏ ta có: \(p^{q-1}\) \(\equiv\) \(1\left(modq\right)\)
Mà \(q^{p-1}\) \(\equiv\) \(0\left(modq\right)\) \(\Rightarrow A\) \(\equiv\) \(1+0-1=0\left(modq\right)\)
\(\Rightarrow A⋮q\left(1\right)\) Tương tự \(\Rightarrow A⋮p\left(2\right)\)
Kết hợp \(\left(1\right);\left(2\right)\) và \(\left(p,q\right)=1\) \(\Rightarrow A⋮p.q\) (Đpcm)
+)Gọi d là ƯCLN(n,22n+1)
\(\Rightarrow n⋮d;22n+1⋮d\)
\(n⋮d\)
\(\Rightarrow22n⋮d\)(1)
\(22n+1⋮d\)(2)
+)Từ (1) và (2)
\(\Rightarrow22n+1-22n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=1\)
=>d=1
\(\RightarrowƯCLN\left(n,22n+1\right)=1\)
=>n và 22n+1 nguyên tố cùng nhau với mọi n nguyên dương
Chúc bn học tốt
Đặt \(\hept{\begin{cases}2\left(p+1\right)=4x^2\\2\left(p^2+1\right)=4y^2\end{cases}}\)
\(\Rightarrow2\left(x-y\right)\left(x+y\right)=p\left(p-1\right)\)
Làm nốt. Xét từ nhân tử VT chia hết cho từng nhân tử VP là xong
Ta có:
\(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\)
\(\Leftrightarrow ac^2+ab^2=ca^2+cb^2\)
\(\Leftrightarrow ac\left(c-a\right)=b^2\left(c-a\right)\)
\(\Leftrightarrow ac=b^2\)
Thế vô ta được
\(a^2+b^2+c^2=a^2+2ac+c^2+b^2-2ac\)
\(=\left(a+c\right)^2-b^2=\left(a+c-b\right)\left(a+c+b\right)\)
Làm nốt