\(2n^2+n-5\) chia hết cho \(n-2\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 

\(\Leftrightarrow2n^2-4n+5n-10+5⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{3;1;7;-3\right\}\)

Câu 2: 

b: \(\dfrac{x^4-4x^2+2x-4a}{x-2}=\dfrac{x^4-2x^3+2x^3-4x^2+2x-4+4-4a}{x-2}\)

\(=x^3+2x^2+2+\dfrac{4-4a}{x-2}\)

Để dưlà -23 thì 4-4a=-23

=>4a=27

=>a=27/4

AH
Akai Haruma
Giáo viên
26 tháng 9 2018

Bài 1:
Ta có:

\(2x^2+4x^3-7=4x^2(x-3)+14x(x-3)+42(x-3)+119\)

\(=(x-3)(4x^2+14x+42)+119\)

Do đó phép chia $2x^2+4x^3-7$ cho $x-3$ có thương là $4x^2+14x+42$ và dư là $119$

Bài 2:

Theo định lý Bê-du về phép chia đa thức thì phép chia đa thức $f(x)$ cho $x-a$ có dư là $f(a)$

Áp dụng vào bài toán:

\(f(2)=-23\)

\(\Leftrightarrow 2^3-4.2^2+5.2+a=-23\)

\(\Leftrightarrow 2+a=-23\Rightarrow a=-25\)

AH
Akai Haruma
Giáo viên
26 tháng 9 2018

Bài 3:

Ta có:

\(x^3+ax+b=x(x^2+2x+1)-2x^2-x+ax+b\)

\(=x(x^2+2x+1)-2(x^2+2x+1)+3x+2+ax+b\)

\(=(x-2)(x+1)^2+x(a+3)+(b+2)\)

Vậy $x^3+ax+b$ khi chia $(x+1)^2$ có dư là $x(a+3)+(b+2)$

\(\Rightarrow \left\{\begin{matrix} a+3=2\\ b+2=1\end{matrix}\right.\Rightarrow a=-1; b=-1\)

Bài 4:

\(x^2+y^2-4y+5=0\)

\(\Leftrightarrow x^2+(y^2-4y+4)+1=0\)

\(\Leftrightarrow x^2+(y-2)^2+1=0\)

\(\Rightarrow x^2+(y-2)^2=-1\)

Rõ ràng vế trái luôn không âm, mà vế phải âm nên vô lý

Vậy pt vô nghiệm, không tồn tại $x,y$ thỏa mãn.

Bài 1:

a: \(2n^2+n-7⋮n-2\)

\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

b: \(\Leftrightarrow n^2-n-n+1+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)

26 tháng 11 2019

Bài 1 : 

Gọi f( x )  = 2n2 + n - 7

       g( x ) = n - 2

Cho g( x )  = 0

\(\Leftrightarrow\)n - 2 = 0

\(\Rightarrow\)n      = 2

\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7

\(\Rightarrow\)f( 2 )  = 3

Để f( x ) \(⋮\)g( x )

\(\Rightarrow\)n - 2 \(\in\)Ư( 3 )  = { \(\pm\)1 ; \(\pm\)3 }

Ta lập bảng :

n - 21- 13- 3
n315- 1

Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }

26 tháng 11 2019

2n^2+n-7 n-2 2n+6 2n^2-4n 6n-7 6n-12 5

Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)

Làm nốt

10 tháng 12 2018

\(x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(-x^2+4x-5=-\left(x^2-2.x.2+2^2\right)-1=-\left(x-2\right)^2-1< 0\forall x\)

\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\forall a\inℤ\)

AH
Akai Haruma
Giáo viên
21 tháng 9 2018

Bài 1:

Ta thấy:

\(g(x)=3x^4+10x^2+7x-12\)

\(=3x^2(x^2+2x+1)-6x(x^2+2x+1)+19x^2+13x-12\)

\(=3x^2(x^2+2x+1)-6x(x^2+2x+1)+19(x^2+2x+1)-25x-31\)

\(=(3x^2-6x+19)(x^2+2x+1)-(25x+31)\)

Do đó:

\(g(x):(x^2+2x+1)\) có thương là \(3x^2-6x+19\) và dư \(-(25x+31)\)

Bài 2:

Theo định lý Bê-du về phép chia đa thức thì số dư của một biểu thức $f(x)$ khi chia cho $x-a$ là $f(a)$

Do đó số dư của $f(x)=x^3-4x^2+2x+a$ khi chia cho $x+3$ là $f(-3)$

Ta có:

\(f(-3)=-29\)

\(\Leftrightarrow (-3)^3-4(-3)^2+2(-3)+a=-29\)

\(\Leftrightarrow -69+a=-29\Rightarrow a=40\)

Vậy.............

Bài 2: 

a: Để A là số nguyên thì \(3n^3+10n^2-5⋮3n+1\)

\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)(do n là số nguyên)

b: Để B là số nguyên thì \(n^3-4n^2+5n-1⋮n-3\)

\(\Leftrightarrow n^3-3n^2-n^2+3n+2n-6+5⋮n-3\)

\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)