K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Y
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HT
3
O
28 tháng 1 2020
Vì n lẻ nên ta có :
S = 1n + 2n + ... + 8n \(\equiv\)1n + 2n - 2n + 0 + 1n + 2n - 2n \(\equiv\)1n \(\equiv\)1 ( mod 8 )
=> S chia 5 dư 1
Vậy S chia 5 dư 1
NY
28 tháng 1 2020
Vì n lẻ nên ta có:
S = 1^n + 2^n + 3^n + .. + 8^n
= 1^n + 2^n- 2^n- 1^ + 0 + 1^n+ 2^n - 2^n ≡ 1^n ≡ 1 ( mod 8 )
Vậy S chia 5 dư 1.
#Châu's ngốc
20 tháng 4 2018
a/ \(n=2m+1\)
\(\Rightarrow\left[\left(2m+1\right)^2+8\left(2m+1\right)+15\right]=4\left(m+2\right)\left(m+3\right)⋮8\)
b/ \(\frac{n^2+1}{n+1}=n-1+\frac{2}{n+1}\)
Để nó chia hết thi n + 1 là ước nguyên của 2
\(\Rightarrow\left(n+1\right)=\left(-2;-1;1;2\right)\)
\(\Rightarrow n=\left(-3,-2,0,1\right)\)
NL
0
\(S=1^n+2^n+3^n+4^n+5^n+6^n+7^n+8^n\)
\(=\left(2^n+8^n\right)+\left(3^n+7^n\right)+\left(4^n+6^n\right)+1^n+5^n\)
\(=\left(2+8\right)\cdot M+\left(3+7\right)\cdot N+\left(4+6\right)\cdot P+1^n+5^n\)(áp dụng hằng đẳng thức với n lẻ)
\(=10M+10N+10P+1^n+5^n\)
\(=5\left(2M+2N+5^{n-1}\right)+1\) chia 5 dư 1.
quá đơn dản phải đọc đề đi rồi hãy hỏi