K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2019

\(S=1^n+2^n+3^n+4^n+5^n+6^n+7^n+8^n\)

\(=\left(2^n+8^n\right)+\left(3^n+7^n\right)+\left(4^n+6^n\right)+1^n+5^n\)

\(=\left(2+8\right)\cdot M+\left(3+7\right)\cdot N+\left(4+6\right)\cdot P+1^n+5^n\)(áp dụng hằng đẳng thức với n lẻ)

\(=10M+10N+10P+1^n+5^n\)

\(=5\left(2M+2N+5^{n-1}\right)+1\) chia 5 dư 1.

25 tháng 3 2019

quá đơn dản phải đọc đề đi rồi hãy hỏi

                                                      Bài giải    :

8.1 x+y=xy

⇒x-xy+y=0

⇒x(1-y)+(y-1)+1=0

⇒(x-1)(1-y)+1=0

⇒(x-1)(y-1)-1=0

⇒(x-1)(y-1)=1

⇒x-1, y-1 là ước của 1

⇒x-1=1,y-1=1 hoặc x-1=-1,y-1=-1

⇒(x;y)=(2;2),(0;0)

 8.3. 5xy-2y²-2x²+2=0

⇔(x-2y)(y-2x)+2=0

⇔(x-2y)(2x-y)=2

⇒x-2y và 2x-y là ước của 2

Hình như tui nhầm bài thì phải???

28 tháng 1 2020

Vì n lẻ nên ta có :

S = 1n + 2n + ... + 8n \(\equiv\)1n + 2n - 2n + 0 + 1n + 2n - 2n \(\equiv\)1n \(\equiv\)1 ( mod 8 )

=> S chia 5 dư 1

Vậy S chia 5 dư 1 

28 tháng 1 2020

Vì n lẻ nên ta có:

S = 1^n + 2^n + 3^n + .. + 8^n

   = 1^n + 2^n- 2^n- 1^ + 0 + 1^n+ 2^n - 2^n ≡ 1^n ≡ 1 ( mod 8 )

Vậy S chia 5 dư 1.

#Châu's ngốc

1 tháng 7 2019

\(2,n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Vì n lẻ \(\Rightarrow\)n có dạng \(2k+1\), thay vào ta có :

\(\Rightarrow\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right).2k.\left(2k+2\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì \(k\left(k+1\right)\left(k+2\right)\)là 3 số tự nhiên liên tiếp

 \(\Rightarrow k\left(k+1\right)\left(k+2\right)\)\(⋮\)\(6\)

\(\Leftrightarrow8k\left(k+1\right)\left(k+2\right)\)\(⋮\)\(48\)

\(\Rightarrow n^3+3n^2-n-3\)\(⋮\)\(48\)\(\left(đpcm\right)\)

3 tháng 7 2019

Đề câu 1  bài đầu tiên sai rồi em. VD như n=3 lẻ thì n^2+4n+8 =29 không chia hết cho 8

Đề bài đúng: \(n^2+4n+3\) chia hết cho 8 với mọi n lẻ

Chứng minh: 

\(n^2+4n+3=n^2+n+3n+3=n\left(n+1\right)+3\left(n+1\right)=\left(n+1\right)\left(n+3\right)\)

Vì n lẻ nên : n=2k+1, k thuộc N

Ta có: \(n^2+4n+3=\left(2k+1+1\right)\left(2k+1+3\right)=\left(2k+2\right)\left(2k+4\right)=4\left(k+1\right)\left(k+2\right)\)

Vì (k+1) và (k+2) là hai số tự nhiên liên tiếp nên tích của nó sẽ chia hết cho 2

=> 4 (k+1)(k+2) chia hết cho 8

nên \(n^2+4n+3\)chia hết cho 8 với n là số tự nhiên lẻ.

14 tháng 8 2019

xnyn+1 : x2y5

=> n = 4

Làm đại ko chắc đúng

14 tháng 8 2019

xnyn + 1 : x2y5

= (xn : x2)(yn + 1 : y5)

=> n - 4 \(\ge\)0

=> n \(\ge\) 4

23 tháng 10 2019

Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath

Em tham khaoe link trên.

14 tháng 2 2016

moi hok lop 6

14 tháng 2 2016

xl , e mới lớp 7 thôi ạ