Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 2x3 + 4x2 + 5x + 3
= 2x3 + 2x2 + 2x2 + 2x + 3x + 3
= 2x2( x + 1 ) + 2x( x + 1 ) + 3( x + 1 )
= ( x + 1 )( 2x2 + 2x + 3 )
=> ( 2x3 + 4x2 + 5x + 3 ) : ( x + 1 ) = 2x2 + 2x + 3
2.a) 2x3 - 3x2 + x + a chia hết cho x + 2
Ta có đa thức chia có bậc 3, đa thức bị chia có bậc 1
=> Thương bậc 2
Lại có hệ số cao nhất là 2 nên đặt đa thức thương là 2x2 + bx + c
=> 2x3 - 3x2 + x + a chia hết cho x + 2
⇔ 2x3 - 3x2 + x + a = ( x + 2 )( 2x2 + bx + c )
⇔ 2x3 - 3x2 + x + a = 2x3 + bx2 + cx + 4x2 + 2bx + 2c
⇔ 2x3 - 3x2 + x + a = 2x3 + ( b + 4 )x2 + ( c + 2b )x + 2c
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}b+4=-3\\c+2b=1\\2c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-7\\c=15\\a=30\end{cases}}\)
Vậy a = 30
b) x2 - 3x + 3 chia x - a được thương là x + 3 dư 21
=> x2 - 3x + 3 = ( x - a )( x + 3 ) + 21
⇔ x2 - 3x + 3 - 21 = x2 + 3x - ax - 3a
⇔ x2 - 3x - 18 = x2 + ( 3 - a )x - 3a
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}3-a=-3\\-3a=-18\end{cases}}\Leftrightarrow a=6\)
Vậy a = 6
c) Tí mình gửi link nhé
c) https://imgur.com/TzbHKPG
Bạn chịu khó đánh máy tí nhé ;-;
1. Thực hiện phép chia đa thức: ta có kết quả:
\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)
Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9
Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15
x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)
Bài 2.
a) x(x-2)-x+2=0
<=> x2-2x-x+2=0
<=> x2-3x+2=0
<=> x2-x-2x-2=0
<=> x(x-1)-2(x-1)=0
<=> (x-1)(x-2)=0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
b) x2(x2+1)-x2-1=0
<=> x4+x2-x2-1=0
<=> x4-1=0
<=> x4=1
<=> x=\(\pm\)1