Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\Leftrightarrow n^2-1+2⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;2\right\}\)
hay \(n\in\left\{0;1\right\}\)
a, Hùng cộng hai số lần lượt từ trái qua phải. Liên sử dụng tính chất giao hoán và kết hợp
b, Theo em nên làm theo cách của bạn Liên vì cáh đó làm sẽ nhanh hơn và không bị nhầm lẫn.
3.bc= 4a=> c= 4a/b.
mà c= ab nên ab= 4a/b => b^2 = 4
- với b=2 ta có hệ : ac=8 và c= 2a . giải hệ được nghiệm a^2 =4 và c= +-2 => b=......
tương tự vs b=2
Câu 1:
a/ Ta có 2 trường hợp:
TH1: 3x-2x-1=2
=>x-1=2
=> x=3
TH2:3x-2x+1=2
=> x+1=2
=> x=1
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}\)
\(=\frac{x+y+z}{y+z+1+x+z+1+x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
Lại có:
- \(\frac{z}{x+y-2}=\frac{1}{2}\Rightarrow2z=x+y-2\Rightarrow2z+2=x+y\)
\(\Rightarrow x+y+z=\frac{1}{2}\)\(\Leftrightarrow2z+2+z=\frac{1}{2}\Leftrightarrow3z=\frac{1}{2}-2=-\frac{3}{2}\Rightarrow z=-\frac{1}{2}\)
- \(\frac{y}{x+z+1}=\frac{1}{2}\Rightarrow2y=x+z+1\Rightarrow2y-1=x+z\)
\(\Rightarrow x+y+z=\frac{1}{2}\Leftrightarrow y+2y-1=\frac{1}{2}\Leftrightarrow3y=\frac{3}{2}\Rightarrow y=\frac{1}{2}\)
- \(\Rightarrow x+y+z=\frac{1}{2}\Rightarrow x+\frac{1}{2}+\left(-\frac{1}{2}\right)=\frac{1}{2}\Rightarrow x=\frac{1}{2}\)
Vậy \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{1}{2};-\frac{1}{2}\right)\)
đề đúnh
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
2 ) Theo đề bài ra , ta có :
\(\begin{cases}x+15=a^2\\x-74=b^2\end{cases}\)
\(\Rightarrow a^2-b^2=89\Rightarrow\left(a+b\right)\left(a-b\right)=89\)
\(\Rightarrow a=45\)
Do đó : \(x=2010\)