Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abc}=c\left(a+b\right)^2\)
\(\Rightarrow100a+10b+c=c\left(a+b\right)^2\)
\(\Rightarrow100a+10b=c\left[\left(a+b\right)^2-1\right]\)
Vì 100a + 10b có tận cùng là 0 nên c hoặc (a + b)2 - 1 có tận cùng là 0. Nhưng c không thể tận cùng là 0 nên (a + b)2 - 1 có tận cùng là 0. \(\Rightarrow\) (a + b)2 có tận cùng là 1. Mà 1 < (a + b)2 < 19 nên (a + b)2 = 9 hoặc 11.
TH1: Nếu (a + b)2 = 9 thì ta có:
\(100a+10b=80c\)
\(\Rightarrow\overline{ab}=8c\)
Vì a + b = 9 và \(\overline{ab}\) \(⋮\) 8 nên a = 7; b = 2; c = 9. Vậy \(\overline{abc}\) = 729
TH2: Nếu (a + b)2 = 11 thì ta có:
\(100a+10b=120c\)
\(\Rightarrow\overline{ab}=12c\)
Vì a + b = 11 và \(\overline{ab}\) \(⋮\) 12 nên a; b; c không có giá trị.
Vậy số cần tìm là 729
*\(2\overline{xy}+1=n^2\left(1\right)\\ 3\overline{xy+1=m^2\left(2\right)\left(1\right)=>2\overline{xy}chia}h\text{ết}cho8=>\overline{xy}chiah\text{ết}cho4\\ \left(2\right)=>3\overline{xy}chiah\text{ết}cho8,\left(8;3\right)=1=>\overline{xy}chiah\text{ết}cho8\)
*\(\left(1\right)+\left(2\right)\\ =>5\overline{xy}+2=m^2+n^2\\ VPchia5d\text{ư}2=>m^2+n^2chia5d\text{ư}2=>m^2v\text{à}n^2chia5d\text{ư}1\\ =>\overline{xy}chiah\text{ết}cho5\\ \left(8;5\right)=1=>\overline{xy}\)
\(=>\overline{xy}chiah\text{ết}cho40\\ =>\overline{xy}\left(40;80\right)=>\overline{xy}=40\)
* 2xy + 1 =n2(1)
3xy+1=m2(2)
(1) => 2xy chia hết cho 8 => xy chia hết cho 4
(2)=>3xy chia hết cho 8 mà (3;8)=1 => xy chia hết cho 8
*(1)+(2)
=> 5xy +2=m2+n2
VP chia 5 dư 2 => m2+n2 chia 5 dư 2 => m2 và n2 chia 5 dư 1
=>xy chia hết cho 5
(8;5)=1
=>xy chia hết cho 40
Ta có:
\(\overline{xxyy}=x.1000+x.100+y.10+y=x.1100+y.11=11\left(x.100+y\right)\)
\(\overline{\left(x+1\right)\left(x+1\right)}.\overline{\left(y+1\right)\left(y+1\right)}=\overline{x+1}.11.\overline{y+1}.11\)
=> \(\overline{xxyy}=\overline{\left(x+1\right)\left(x+1\right)}.\overline{\left(y+1\right)\left(y+1\right)}\)
\(\Leftrightarrow11\left(x.100+y\right)=\overline{\left(x+1\right)}.11.\overline{\left(y+1\right)}.11\)
\(\Leftrightarrow x.100+y=11.\overline{x+1}.\overline{y+1}\)
\(\Leftrightarrow\overline{x0y}=11.\overline{x+1}.\overline{y+1}\)(1)
=> \(\overline{x0y}⋮11\)=> \(x-0+y⋮11\Rightarrow x+y⋮11\)=> x+y=11
và \(\overline{x0y}⋮x+1;\overline{x0y}⋮y+1\)
Em thay các giá trị x, y vào thử nhé
xy. xyx = xyxy
=> xyx = xyxy : xy
=> xyx= (xy.100 +xy) :xy
=> xyx= xy.100 :xy+xy:xy
=> xyx = 100+1
=> xyx = 101
Vậy x= 1; y=0
Hình như thầy cho đề sai : \(\overline{xxyy}=\overline{xx}^2+\overline{yy}^2\)mới đúng ko chắc nha
Ta có:
\(\overline{xyxy}\)=\(\overline{xy}\).100+\(\overline{xy}\)
Hay:\(\overline{xyxy}\)=\(\overline{xy}\).101
Mà theo bài ra ta có:
\(\overline{xyxy}\)=\(\overline{xy^2}\)+\(\overline{yx^2}\)
Hay:\(\overline{xyxy}\)=\(\overline{xy}\).\(\overline{xy}\)+\(\overline{yx}\).\(\overline{yx}\)
\(\Rightarrow\)101=\(\overline{xy}\)+\(\overline{yx}\).\(\overline{yx}\)
Đến đây mk chịu,còn ko biết đúng ko nữa,mk đăng cho bn xem đúng ko thôi.
Khả năng sai cực cao
100\(\le\)\(n^2\)-1=\(\overline{abc}\)\(\le\)999
\(\Rightarrow\)100<101\(\le\)\(n^2\)=\(\overline{abc}\)+1\(\le\)1000
\(\Rightarrow\)\(10^2\)<\(n^2\)<\(32^2\)\(\Rightarrow\)10<n<32
\(\overline{abc}\)-\(\overline{cba}\)=\(n^2\)-1-\(n^2\)+4n-4
\(\overline{abc}\)-\(\overline{cba}\)=(\(n^2\)-\(n^2\))+4n-1-4
\(\overline{abc}\)-\(\overline{cba}\)=0+4n-5
(100.a+10.b+c)-(100c+10b+a)=4n-5
99a-99c=4n-5
\(\Rightarrow\)4n-5\(⋮\)99(1)
Vì 10<n<32\(\Rightarrow\)35<4n<123(2)
Từ (1) và(2) \(\Rightarrow\)4n-5=99
\(\Rightarrow\)n=99+5 :4 =26
\(\overline{abc}\)=\(26^2\)-1
\(\overline{abc}\)=675
\(\overline{cba}\)=576