Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : abc = 100a + 10b + c (1)
cba = 100c + 10b + a = (n-2)2 (2)
lấy (2) trừ (1) ta có: 99(a - c) = 4n - 5 => 4n - 5 \(⋮\) 99
100 \(\le\) n2 - 1 \(\le\) 999
<=> \(101\le n^2\le1000\)
<=> \(11\le n\le31\)
<=> \(44\le4n\le124\)
<=> \(39\le4n-5\le119\)
mà 4n - 5 \(⋮\) 99
=> 4n - 5 = 99
=> n = 26
=>abc = 262 - 1 = 675
VẬy.....
a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)
Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)
b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)
Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7
Câu hỏi của Nguyễn Thị Linh Chi - Toán lớp 6 - Học toán với OnlineMath
a, \(\overline{3x}+\overline{x3}=11\cdot11\)
\(\overline{3x}+\overline{x3}=121\)
\(33+\overline{xx}=121\)
\(\overline{xx}=121-33\)
\(\overline{xx}=88\)
\(\Rightarrow x=8\).
b, \(\left(x+1\right)+\left(x+4\right)+\left(x+7\right)+...+\left(x+28\right)=195\)
1 + 4 + 7 + ... +28 là dãy số cách đều
Số số hạng : (28 - 1) : 3 + 1 = 10 (số)
Tổng dãy số : \(\dfrac{\left(28+1\right)\cdot10}{2}=145\)
Để tìm x, ta có :
\(x\cdot10+145=195\)
\(x\cdot10=195-145\)
\(x\cdot10=50\Rightarrow x=5\)
c, \(\left(x-452\right)\cdot\text{a}=\overline{aaaa}\)
\(x-452=\overline{aaaa}:a\)
\(x-452=1111\)
\(x=1111+452=1563\)
Để mình giúp thỏ nghen!! hihihihi
\(abc=n^2-1;cba=\left(n-2\right)^2=n^2-4n+4\\ \Rightarrow abc-cba=\left(n^2-1\right)-\left(n^2-4n+4\right)\\ =n^2-1-n^2+4n-4\\ =4n-5\)
Ta lại có :
\(100\le cba\le999\\ \Rightarrow100\le\left(n-2\right)^2\le999\\ \Rightarrow10\le n-2\le31\\ \Rightarrow12\le n\le33\\ \Rightarrow12.4-5\le4n-5\le4.33-5\\ \Rightarrow43\le4n-5\le127\)
Mà \(abc-cba=99\left(a-c\right)⋮99\\ \Rightarrow4n-5⋮99\\ \Rightarrow4n-5=99\\ \Rightarrow n=26\\ \Rightarrow abc=675\)
Chúc bạn học tốt nhé !!!
\(\overline{abc}=c\left(a+b\right)^2\)
\(\Rightarrow100a+10b+c=c\left(a+b\right)^2\)
\(\Rightarrow100a+10b=c\left[\left(a+b\right)^2-1\right]\)
Vì 100a + 10b có tận cùng là 0 nên c hoặc (a + b)2 - 1 có tận cùng là 0. Nhưng c không thể tận cùng là 0 nên (a + b)2 - 1 có tận cùng là 0. \(\Rightarrow\) (a + b)2 có tận cùng là 1. Mà 1 < (a + b)2 < 19 nên (a + b)2 = 9 hoặc 11.
TH1: Nếu (a + b)2 = 9 thì ta có:
\(100a+10b=80c\)
\(\Rightarrow\overline{ab}=8c\)
Vì a + b = 9 và \(\overline{ab}\) \(⋮\) 8 nên a = 7; b = 2; c = 9. Vậy \(\overline{abc}\) = 729
TH2: Nếu (a + b)2 = 11 thì ta có:
\(100a+10b=120c\)
\(\Rightarrow\overline{ab}=12c\)
Vì a + b = 11 và \(\overline{ab}\) \(⋮\) 12 nên a; b; c không có giá trị.
Vậy số cần tìm là 729