\(n\in N\)để\(M=2014+n^2\)là một số chính phương.

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2019

1.

    Không biết là đề sai hay đúng nhưng hình như không có số nào

2

   Ta có  : 88888888 (n số 8)

=> Tổng của 88888888..... (n số 8) = 8n

   8n - 9 + n

= 9n - 9

= 9.(n-1) 

=> 88888888..... (n số 8) - 9 + n chia hết cho 9

3.

Tổng của các chữ số đó là 

(1.2012) + 4 + (3.2012)

=2012 + 4 + 6036

=8052

Mà 8052 chia hết cho 2

=> 1111111111111111111...(2012 chữ số 1)43333333333333333333...(2012 chữ số 3) là hợp số

15 tháng 3 2019

 mình làm câu 2 nha

B= 88...8 -9 + n ( n chữ số 8)

B= 11...1×8 -9 + n  ( n chữ số 1)

B= 8n - 9 + n

B=9n - 9

B=9 . (n-1) chia hết cho 9

=> B chia hết cho 9

=> đpcm

15 tháng 3 2019

Mình làm cả câu 3 nha

Số 111...1114333...333 (2012 chữ số 1;2012 chữ số 3) có tổng các chữ số là :1.2012+4+3.2012=8052 chia hết cho 3

=>1111...11433...33 (2012 chữ số 1;2012 chữ số 3) chia hết cho 3

Mà số đó lớn hơn 3

=>111...1114333...333 (2012 chữ số 1;2012 chữ số 3) là hợp số 

=>đpcm

11 tháng 10 2017

c) 1. 10n+2 \(⋮\)2n-1

=> 5(2n-1) +7 \(⋮\)2n-1   => 7\(⋮\)2n-1

    2. 2n+3\(⋮\)n-2

=> 2(n-2) +7\(⋮\)n-2      => 7\(⋮\)n-2

    3. 3n+1 \(⋮\)11-2n

=> 6n+2 \(⋮\)2n-11

=> 3(2n-11) +35\(⋮\)2n-11

=> 35\(⋮\)2n-11

11 tháng 10 2017

a) vì chia 4 dư 2 nên \(\overline{5b}\)chia 4 dư 2 => b là 0 ; 4 ; 8

nếu b =0 thì 4+3+a+5+0 = 12 +a chia 9 dư 2 => a=8

nếu b =4 thì 4+3+a+5+4 = 16 +a chia 9 dư 2 => a=4

nếu b = 8 thì 4+3+a+5+8 = 20+a chia 9 dư 2 => a = 0 hoặc a=9

cũng 3 năm r chưa lm nên k biết có đúng k

30 tháng 4 2018

1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow M>N\)

b.ta thấy:

\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)

=> A>B

30 tháng 4 2018

Trịnh Thùy Linh ơi mk cảm ơn bạn nhìu nha =)), iu bạn nhìu

23 tháng 4 2017

Câu 2:

\(A=2014+\dfrac{2014}{1+2}+\dfrac{2014}{1+2+3}+...+\dfrac{2014}{1+2+3+...+2013}\)

\(=2014\left(1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+2013}\right)\)

\(=2014\left(1+\dfrac{1}{2\left(2+1\right)}.2+\dfrac{1}{3\left(3+1\right)}.2+...+\dfrac{1}{2013\left(2013+1\right)}.2\right)\)

\(=2014\left(\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{2013.2014}\right)\)

\(=4028\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2013.2014}\right)\)

Bạn tự tính nốt nhé

23 tháng 4 2017

1)

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2011\cdot2012}\left(1\right)\)\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2011\cdot2012}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\\ =\dfrac{1}{1}-\dfrac{1}{2012}< 1\left(2\right)\)

Từ (1) và (2) ta có: A < 1

2)

\(A=2014+\dfrac{2014}{1+2}+\dfrac{2014}{1+2+3}+...+\dfrac{2014}{1+2+3+...+2013}\\ =2014\cdot\left(\dfrac{1}{1}+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+2013}\right)\\ =2014\cdot\left(\dfrac{1}{\left(1\cdot2\right):2}+\dfrac{1}{\left(2\cdot3\right):2}+\dfrac{1}{\left(3\cdot4\right):2}+...+\dfrac{1}{\left(2013\cdot2014\right):2}\right)\\ =2014\cdot\left(\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{2013\cdot2014}\right)\\ =2014\cdot2\cdot\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2013\cdot2014}\right)\\ =4028\cdot\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\right)\\ =4028\cdot\left(1-\dfrac{1}{2014}\right)\\ =4028\cdot\dfrac{2013}{2014}\\ =4026\)

3)

Để A là số nguyên thì \(6n+42⋮6n\Rightarrow42⋮6n\Rightarrow6n\inƯ\left(42\right)\)

\(Ư\left(42\right)=\left\{1;2;3;6;7;14;21;42\right\}\)

6n 1 2 3 6 7 14 21 42
n \(\dfrac{1}{6}\) \(\dfrac{1}{3}\) \(\dfrac{1}{2}\) 1 \(\dfrac{7}{6}\) \(\dfrac{7}{3}\) \(\dfrac{7}{2}\) 7

Vì n là số tự nhiên nên n = 1 hoặc n = 7

4)

\(A=\dfrac{17^{18}+1}{17^{19}+1}< \dfrac{17^{18}+1+16}{17^{19}+1+16}=\dfrac{17^{18}+17}{17^{19}+17}=\dfrac{17\cdot\left(17^{17}+1\right)}{17\cdot\left(17^{18}+1\right)}=\dfrac{17^{17}+1}{17^{18}+1}=B\)

Vậy A<B

Bài 1:a) 5(x + 2) - 4(x - 3) = 17b) xy + 2x - y = 2c) 2x + 9 \(⋮\)x - 1 (x là số nguyên)Bài 2:a) A = 9 + 99 + 999 + ... + 99...9 (có 50 chữ số 9)b) Tìm số nguyên x biết: 3x + 1 \(⋮\)2x - 5c) Cho A = 3 - 32 + 33 - 34 + ... + 32017Chứng tỏ 4A - 3 là một số chính phương.Bài 3:a) Cho A = 111...11 (có 2016 chữ số 1). Hỏi A là số nguyên tố hay hợp số?b) Cho B = 88...8 ( có n chữ số 8) - 9 + n        ( n\(\in\)N*)Chứng minh rằng...
Đọc tiếp

Bài 1:

a) 5(x + 2) - 4(x - 3) = 17

b) xy + 2x - y = 2

c) 2x + 9 \(⋮\)x - 1 (x là số nguyên)

Bài 2:

a) A = 9 + 99 + 999 + ... + 99...9 (có 50 chữ số 9)

b) Tìm số nguyên x biết: 3x + 1 \(⋮\)2x - 5

c) Cho A = 3 - 32 + 33 - 34 + ... + 32017

Chứng tỏ 4A - 3 là một số chính phương.

Bài 3:

a) Cho A = 111...11 (có 2016 chữ số 1). Hỏi A là số nguyên tố hay hợp số?

b) Cho B = 88...8 ( có n chữ số 8) - 9 + n        ( n\(\in\)N*)

Chứng minh rằng B\(⋮\)9

Bài 4:

a) Nếu chia 3698 và 736 cho cùng một số tự nhiên thì ta được số dư tương ứng là 26 và 56. Hỏi số chia phải bằng bao nhiêu?

b) Chứng minh rằng: Nếu abcd\(⋮\)101 thì ab - cd = 0

Bài 5:

a) Trên đường thẳng xy lấy một điểm O và hai điểm M, N sao cho OM = 2 cm, ON = 3 cm. Vẽ các điểm A, B trên đường thẳng xy sao cho điểm M là trung điểm của đoạn thẳng OA, N là truung điểm của đoạn OB. Tính AB?

b) Trên tia Ox lấy 2 điểm B và C sao cho C nằm giữa O và B. Gọi M và N lần lượt là trung điểm của OC và CB. Tính MN biết MN + OB = 9 cm.

Bài 6:

Tìm ƯCLN của \(\frac{n.\left(n+1\right)}{2}\)và 2n + 1 (n\(\in\)N*)

Hạn nộp đáp án là trưa ngày 2/1/2018.

 

0
26 tháng 2 2017

Bài 1:

Ta có: \(\overline{ababab}=10101.\overline{ab}⋮3\)

\(\Rightarrow\overline{ababab}\in B\left(3\right)\left(đpcm\right)\)

Bài 3:

Đặt \(A=\frac{1}{2^2}+...+\frac{1}{2^n}\)

\(\Rightarrow2A=\frac{1}{2}+...+\frac{1}{2^{n-1}}\)

\(\Rightarrow2A-A=\frac{1}{2}-\frac{1}{2^n}\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{2^n}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)