K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 2 2021

\(\Leftrightarrow3x\left(y+2\right)+y+2-54=0\)

\(\Leftrightarrow\left(3x+1\right)\left(y+2\right)=54\)

Mặt khác ta có \(3x+1\) luôn chia 3 dư 1, mà 54 có đúng 1 ước dương chia 3 dư 1 là 1

\(\Rightarrow\left\{{}\begin{matrix}3x+1=1\\y+2=54\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=52\end{matrix}\right.\) (ktm x;y nguyên dương)

Do đó pt đã cho ko có nghiệm nguyên dương

29 tháng 8 2021

ai giúp em bài1 và phần b bài 2 với ạ

 

Theo đề: \(p=x^3+y^3-3xy+1=\left(x+y\right)^3+1-3xy\left(x+y\right)-3xy\)

\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)

\(=\left(x+y+1\right)\left(x^2+y^2-x-y-xy+1\right)\)

Vậy \(\left(x+y+1\right)\)và \(\left(x^2+y^2-x-y-xy+1\right)\)là các ước của p, mà p là số nguyên tố nên 1 trong 2 ước trên phải bằng 1 và ước còn lại bằng chính p

+) \(\hept{\begin{cases}x+y+1=1\Leftrightarrow x=-y\\x^2+y^2-x-y-xy+1=p\end{cases}}\)---> Loại, vì x,y nguyên dương nên x không thể bằng -y.

+) \(\hept{\begin{cases}x+y+1=p\Leftrightarrow x+y=p-1\\x^2+y^2-x-y-xy+1=1\end{cases}}\)---> Xét vế dưới:

\(x^2+y^2-x-y-xy=0\)---> Áp dụng 1 số BĐT đơn giản:

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)và \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow-xy\ge-\frac{\left(x+y\right)^2}{4}\)

Suy ra: \(x^2+y^2-x-y-xy\ge\frac{\left(x+y\right)^2}{2}-\left(x+y\right)-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}-\left(x+y\right)\)

\(\Rightarrow0\ge\frac{\left(x+y\right)^2}{4}-\left(x+y\right)\Leftrightarrow0\le x+y\le4\Rightarrow0\le p-1\le4\Leftrightarrow1\le p\le5\)

Vậy số nguyên tố p lớn nhất thỏa mãn đề bài là p = 5

Khi đó x = y = 2.

16 tháng 2 2017

Phương trình x 2 − 6x + 2m + 1 = 0 (a = 1; b’ = −3; c = 2m + 1)

Ta có  = 9 – 2m – 1= 8 – 2m; S = x 1 + x 2 = 6 ; P = x 1 . x 2 = 2 m + 1

Vì a = 1  0 nên phương trình có hai nghiệm âm phân biệt  ⇔ Δ > 0 P > 0 S > 0

⇔ 8 − 2 m > 0 6 > 0 2 m + 1 > 0 ⇔ m < 4 m > − 1 2 ⇔ − 1 2 < m < 4

mà m ∈ ℤ ⇒ m ∈ {0; 1; 2; 3}

Vậy m ∈ {0; 1; 2; 3}

Đáp án: D

8 tháng 2 2019

Phương trình tương đương với:

\(6x+6y+48=9xy\)\(\Leftrightarrow9xy-6x-6y=48\)\(\Leftrightarrow9xy-6x-6y+4=52\)\(\Leftrightarrow3x\left(3y-2\right)-2\left(3y-2\right)=52\)\(\Leftrightarrow\left(3x-2\right)\left(3y-2\right)=52.\)

Do \(x,y\inℕ^∗\)nên \(3x-2;3y-2\ge1\). Do đó 3x - 2 và 3y - 2 là các ước nguyên dương của 52 gồm 1;4;13;52.

Do \(x,y\inℕ^∗\)nên 3x - 2; 3y - 2 chia 3 dư 1. Do vai trò của x và y như nhau nên giả sử x \(\le\)y, ta có 2 trường hợp sau:

  • \(\hept{\begin{cases}3x-2=1\\3y-2=52\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=18\end{cases}.}}\)
  • \(\hept{\begin{cases}3x-2=4\\3y-2=13\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}.}}\)

Đảo vai trò của x và y cho nhau ta có 4 cặp số (x;y) nguyên dương thoả mãn đề bài: (1;18),(18;1),(2;5),(5;2).

17 tháng 10 2019

\(y\in\left(-\infty;\infty\right)\)

\(-2y^2-3xy-2y+2x^2+6x=1\)

\(-2y^2-3xy-2y-2x^2+6x-1=0\)

\(-2y^2-\left(3x+2\right)y+2x^2+6x-1=0\)

\(y=\frac{\sqrt{25x^2+60x-4-3x-2}}{4}\)

\(y=-\frac{\sqrt{25x^2+60x-4+3x+2}}{4}\)

#Ứng Lân

6 tháng 6 2017

Ta có 3xy+x-y=1

=>3xy+x-y-1=0

<=>3xy=0 và x-y-1=0

Giải hệ 2 phương trình ta có 

TH(1)x=0=>y=-1

TH(2)x=0 =>y=1

 Vậy phương thức trên có 2 cặp nghiệm

 k mk nha

6 tháng 6 2017
Câu trả lời của phương phan sai rồi. Ta có 3xy + x - y = 1 Nên 9xy + 3x - 3y - 1 = 2 Nên (3y + 1)(3x - 1) = 2. Khi đó xét các trường hợp ước của 2.