\(x^3-y^3-2y^2-3y-1=0\)

2) Tìm bộ ngu...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 8 2019

Bài 2:
Với $x,y,z$ nguyên dương ta thấy:

\((x+y)^2+3x+y+1> (x+y)^2(1)\)

Và:

\((x+y)^2+3x+y+1< (x+y)^2+4(x+y)+4\)

hay $(x+y)^2+3x+y+1< (x+y+2)^2(2)$

Từ \((1);(2)\Rightarrow (x+y)^2< (x+y)^2+3x+y+1< (x+y+2)^2\)

\(\Leftrightarrow (x+y)^2< z^2< (x+y+2)^2\)

Theo nguyên lý kẹp suy ra $z^2=(x+y+1)^2$

$\Leftrightarrow (x+y)^2+3x+y+1=(x+y+1)^2$

$\Leftrightarrow x=y$

Thay vào PT ban đầu:

\((2x)^2+3x+x+1=z^2\Leftrightarrow (2x+1)^2=z^2\Rightarrow 2x+1=z\) (không có TH $2x+1=-z$ do $x,z$ cùng nguyên dương)

Vậy PT có nghiệm $(x,y,z)=(m,m,2m+1)$ với $m$ là số nguyên dương bất kỳ.

AH
Akai Haruma
Giáo viên
28 tháng 8 2019

Lời giải:

Xét

PT \(\Leftrightarrow x^3=y^3+2y^2+3y+1\)

Ta thấy:

\(y^3+2y^2+3y+1=(y^3+3y^2+3y+1)-y^2=(y+1)^3-y^2\leq (y+1)^3(1)\)

\(y^3+2y^2+3y+1=(y^3-3y^2+3y-1)+5y^2+2=(y-1)^3+5y^2+2\)

\(>(y-1)^3(2)\)

Từ \((1);(2)\Rightarrow (y+1)^3\geq y^3+2y^2+3y+1> (y-1)^3\)

\(\Leftrightarrow (y+1)^3\geq x^3> (y-1)^3\)

Theo nguyên lý kẹp thì \(\left[\begin{matrix} x^3=(y+1)^3\\ x^3=y^3\end{matrix}\right.\)

Nếu \(x^3=(y+1)^3\Leftrightarrow y^3+2y^2+3y+1=(y+1)^3\)

\(\Leftrightarrow y=0\)

\(\Rightarrow x^3=1\Rightarrow x=1\)

Nếu \(x^3=y^3\Leftrightarrow y^3+2y^2+3y+1=y^3\)

\(\Leftrightarrow 2y^2+3y+1=0\Leftrightarrow (2y+1)(y+1)=0\Rightarrow y=-1\) (do $y$ nguyên)

$\Rightarrow x^3=y^3=-1\Rightarrow x=-1$

Vậy $(x,y)=(1,0); (-1,-1)$

28 tháng 6 2018

2) ĐK: x;y ∈ Z

pt ⇔ \(\left(x-y\right)^2+\left(y-1\right)\left(y-3\right)=0\)

=> I) a) x-y=0 => x=y

b) y-1=0 => y=1 => x=y=1(nhận)

II) a) x-y=0 => x=y

b) y-3=0 => y=3 => x=y=3(nhận)

\(x^2+x=y^4+y^3+y^2+y\)                                (1)

\(\Leftrightarrow4y^4+4y^3+4y^2+4y+1=4x^2+4x+1\)

\(\Leftrightarrow\left(2y^2+y\right)^2+3y^2+4y+1=\left(2x+1\right)^2\)

Ta có

\(\left(2y^2+y\right)^2< \left(2y^2+y\right)+3y^2+4y+1< \left(2y^2+y+2\right)^2\)            (2)

\(\left(2\right)\Leftrightarrow\hept{\begin{cases}3y^2+4y+1>0\\\left(3y^2+y\right)^2+4\left(2y^2+y\right)+4-\left(2y^2+y\right)^2-3y^2-4y-1>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(y+1\right)\left(3y+1\right)>0\\5y^2+3>0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}y< -1\\y>\frac{-1}{3}\end{cases}}\)

\(\Leftrightarrow y\ne-1\)(do y là số nguyên)

lúc đó (1) xảy ra khi 

\(\left(2x+1\right)^2=\left(2y^2+y+1\right)^2\)                               (3)

tức là \(\left(2y^2+y\right)^2+3y^2+4y+1=\left(2y^2+y+1\right)^2\)

\(\Leftrightarrow\)\(\left(2y^2+y\right)^2+3y^2+4y+1=\left(2y^2+y\right)^2+2\left(2y^2+y\right)+1\)

\(\Leftrightarrow3y^2+4y=4y^2+2y\)

\(\Leftrightarrow y^2-2y=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=0\\y=2\end{cases}}\)

Thay vào (3) tìm được y

Nghiệm (y,x) là (0,0),(0,-1),(2,5),(2,-6),(-1,0),(-1,-1)

22 tháng 12 2016

Giao luu

28 tháng 10 2014

xin lỗi em mới lớp 8 ko trả lời dc

AH
Akai Haruma
Giáo viên
31 tháng 8 2019

Lời giải:

PT \(\Leftrightarrow y^4=x^4-3x^2-1\)

Ta thấy:

\(x^4-3x^2-1=(x^2-4x^2+4)+x^2-5=(x^2-2)^2+x^2-5\)

Nếu $x^2-5\leq 0\Rightarrow x^2< 9\Rightarrow -3< x< 3$. Vì $x$ nguyên nên $x\in\left\{\pm 2; \pm 1;0\right\}$

Thử các TH trên ta thấy đều không thỏa mãn.

Do đó $x^2-5>0$.

\(\Rightarrow x^4-3x^2-1=(x^2-2)^2+x^2-5> (x^2-2)^2(*)\)

Mặt khác:

\(x^4-3x^2-1=(x^4-2x^2+1)-(x^2+2)=(x^2-1)^2-(x^2+2)< (x^2-1)^2(**)\)

Từ $(*); (**)\Rightarrow (x^2-1)^2> x^4-3x^2-1> (x^2-2)^2$

$\Leftrightarrow (x^2-1)^2> y^4> (x^2-2)^2$

Theo nguyên lý kẹp thì điều này vô lý

Do đó không tồn tại $x,y$ nguyên thỏa mãn đề bài.