Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 8( Mình không viết đè nữa nha)
a) 2-1/1.2 + 3-2/2.3 + 4-3/3.4 +…..+ 100-99/99.100
= 1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 +…..+ 1/99 – 1/100
= 1 – 1/100 < 1
= 99/100 < 1
Vậy A< 1
Bài 1 :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{9}{19}\)
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{9}{19}\)
\(\Leftrightarrow1-\frac{1}{2x+3}=\frac{9}{19}\)
\(\Leftrightarrow\frac{1}{2x+3}=1-\frac{9}{19}\)
\(\Leftrightarrow\frac{1}{2x+3}=\frac{10}{19}\)
\(\Leftrightarrow10.\left(2x+3\right)=19\Leftrightarrow2x+3=\frac{19}{10}\)
\(\Leftrightarrow2x=\frac{19}{10}-3\Leftrightarrow2x=-\frac{11}{10}\)
\(\Leftrightarrow x=-\frac{11}{20}=-0,55\)
Bài 2 :
\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2016.2018}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{2016}-\frac{1}{2018}\)
\(=\frac{1}{2}-\frac{1}{2018}=\frac{504}{1009}\)
Bài 1 :
a) =) \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)= \(1-\frac{1}{101}=\frac{100}{101}\)
b) =) \(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
=) \(\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)( theo phần a)
Bài 2 :
-Gọi d là UCLN \(\left(2n+1;3n+2\right)\)( d \(\in N\)* )
(=) \(2n+1⋮d\left(=\right)3.\left(2n+1\right)⋮d\)
(=) \(6n+3⋮d\)
và \(3n+2⋮d\left(=\right)2.\left(3n+2\right)⋮d\)
(=) \(6n+4⋮d\)
(=) \(\left(6n+4\right)-\left(6n+3\right)⋮d\)
(=) \(6n+4-6n-3⋮d\)
(=) \(1⋮d\left(=\right)d\in UC\left(1\right)\)(=) d = { 1;-1}
Vì d là UCLN\(\left(2n+1;3n+2\right)\)(=) \(d=1\)(=) \(\frac{2n+1}{3n+2}\)là phân số tối giản ( đpcm )
Bài 3 :
-Để A \(\in Z\)(=) \(n+2⋮n-5\)
Vì \(n-5⋮n-5\)
(=) \(\left(n+2\right)-\left(n-5\right)⋮n-5\)
(=) \(n+2-n+5⋮n-5\)
(=) \(7⋮n-5\)(=) \(n-5\in UC\left(7\right)\)= { 1;-1;7;-7}
(=) n = { 6;4;12;-2}
Vậy n = {6;4;12;-2} thì A \(\in Z\)
Bài 4:
A = \(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
= \(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{111111}\right)\)
= \(10101.\left(\frac{1}{111111}+\frac{5}{222222}\right)\)= \(10101.\left(\frac{2}{222222}+\frac{5}{222222}\right)\)
= \(10101.\frac{7}{222222}\)( không cần rút gọn \(\frac{7}{222222}\))
= \(\frac{7}{22}\)
câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008
ta có:\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)
\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}
câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008
\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)
\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\)\( (1)
mà \(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2007.2008}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(=1-\frac{1}{2008}\)<1 (2)
mà 1<3 (3)
từ (1),(2) và (3)=> đpcm
A=2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101
A= 2 - 1/3 + 1/3 - 1/5 + 1/5 - ... + 2/99 - 2/101
A = 2 - 2/101 = 200/101
B = 3-1/3+1/3-1/5+1/5-...+3/49-3/51
B = 3-3/51(tự tính nhé)
C = 5(5/1.6+5/6.11+5/11.16+....+5/26-5/31
C = 5(5-1/31)(tự tính)
D rút gon cho 2 rồi 3D , sau đó 5(3/.... tương tự các cách làm trên)
2E nhân lên rồi giải giống trên
3F Rồi nhân 4/77 và rút gọn thì tính được
a, A= \(\frac{1}{1}\)- \(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+......+\(\frac{1}{99}\)-\(\frac{1}{100}\)
A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+(-\(\frac{1}{3}\)+\(\frac{1}{3}\)-.....-\(\frac{1}{99}\)+\(\frac{1}{99}\))
A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+0
A=1-\(\frac{1}{100}\)=\(\frac{100}{100}\)-\(\frac{1}{100}\)=\(\frac{99}{100}\)
a) Ta có: \(\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{54}{24}\cdot\frac{56}{21}\)
\(=\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{9}{4}\cdot\frac{8}{3}\)
\(=4\cdot\frac{-1}{3}\cdot\frac{4}{7}\cdot3\)
\(=12\cdot\frac{-4}{21}=\frac{-48}{21}=\frac{-16}{7}\)
b) Ta có: \(5\cdot\frac{7}{5}=\frac{35}{5}=7\)
c) Ta có: \(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}\)
\(=\frac{5}{9}\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)\)
\(=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
d) Ta có: \(4\cdot11\cdot\frac{3}{4}\cdot\frac{9}{121}\)
\(=\frac{4\cdot11\cdot3\cdot9}{4\cdot121}=\frac{27}{11}\)
e) Ta có: \(\frac{3}{4}\cdot\frac{16}{9}-\frac{7}{5}:\frac{-21}{20}\)
\(=\frac{4}{3}+\frac{4}{3}=\frac{8}{3}\)
g) Ta có: \(2\frac{1}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\left(\frac{2}{3}+0,4\cdot5\right)\right]\)
\(=\frac{7}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\frac{2}{3}+2\right]\)
\(=\frac{7}{3}-\frac{1}{3}\cdot\frac{7}{6}\)
\(=\frac{7}{3}-\frac{7}{18}=\frac{42}{18}-\frac{7}{18}=\frac{35}{18}\)