Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm n thuộc N để các biểu thức là số nguyên tố
a ) \(P=\left(n-3\right)\left(n+3\right)\)
\(\left(n-3\right)\left(n+3\right)=0\)
\(n^2-3^2=0\)
\(n^2-9=0\)
\(n^2=9\)
\(n=\sqrt{9}\)
\(n=3\)
Câu 1:
\(xy+x+y=17\)
\(\Rightarrow\left(xy+x\right)+\left(y+1\right)=18\)
\(\Rightarrow x\left(y+1\right)+\left(y+1\right)=18\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=18\)
Do \(x,y\in N\Rightarrow x+1,y+1\ge1\)
Từ đó ta có bảng sau:
x + 1 | 1 | 2 | 3 | 6 | 9 | 18 |
y + 1 | 18 | 9 | 6 | 3 | 2 | 1 |
x | 0 | 1 | 2 | 5 | 8 | 17 |
y | 17 | 8 | 5 | 2 | 1 | 0 |
\(\frac{n-1}{n-3}\) \(=\frac{n-3+2}{n-3}=1+\frac{2}{n-3}\)
dể \(\frac{n-1}{n-3}\)thuộc Z <=> \(\frac{2}{n-3}\)thuộc Z
mà n thuộc Z
=> \(n-3\)thuộc ước của 2
=> \(n-3\)thuộc \(\left(1;-1;2;-2\right)\)
=> \(n\)thuộc \(\left(4;2;5;1\right)\)
\(\frac{n-2}{n-5}=\frac{n-5+3}{n-5}\) \(=1+\frac{3}{n-5}\)
tg tự câu trên
a, =>(n+3)-5n+5 chia hết cho n+3
=> 5n+5 chia hết cho n+3
=>5(n+3)-10 chia hết cho n+3
=>10 chia hết cho n+3
=>n+3 thuộc ước của 10
sau đó bạn tự kẻ bảng nhé
Mik chỉ làm đc con a thui sorry nhé
Câu 1:
a) \(\dfrac{n-5}{n-3}\)
Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(n-5⋮n-3\)
\(\Rightarrow n-3-2⋮n-3\)
\(\Rightarrow2⋮n-3\)
\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng giá trị:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
Vậy \(n\in\left\{-1;0;2;3\right\}\)
b) \(\dfrac{2n+1}{n+1}\)
Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)
\(2n+1⋮n+1\)
\(\Rightarrow2n+2-1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
n-1 | -1 | 1 |
n | 0 | 2 |
Vậy \(n\in\left\{0;2\right\}\)
Câu 2:
a) \(\dfrac{n+7}{n+6}\)
Gọi \(ƯCLN\left(n+7;n+6\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\)
\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản
b) \(\dfrac{3n+2}{n+1}\)
Gọi \(ƯCLN\left(3n+2;n+1\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản