Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Gọi p là số nguyên tố phải tìm.
Ta có: p chia cho 60 thì số dư là hợp số $⇒$⇒ p = 60k + r = 22.3.5k + r với k,r $∈$∈ N ; 0 < r < 60 và r là hợp số.
Do p là số nguyên tố nên r không chia hết các thừa số nguyên tố của p là 2 ; 3 và 5.
Chọn các hợp số nhỏ hơn 60, loại đi các số chia hết cho 2 ta có tập hợp A = {9 ; 15 ; 21 ; 25 ; 27 ; 33 ; 35 ; 39 ; 45 ; 49 ; 21 ; 55 ; 57}
Loại ở tập hợp A các số chia hết cho 3 ta có tập hợp B = {25 ; 35 ; 49 ; 55}
Loại ở tập hợp B các số chia hết cho 5 ta có tập hợp C = {49}
Do đó r = 49. Suy ra p = 60k + 49. Vì p < 200 nên k = 1, khi đó p = 60.1 + 49 = 109 hoặc k = 2, khi đó p = 60.2 + 49 = 169.
Loại p = 169 = 132 là hợp số ⇒ chỉ có p = 109.
Số cần tìm là 109.
2)Gọi số nguyên tố đó là n, ta có n=30k+r (r<30, r nguyên tố)
Vì n là số nguyên tố nên r không thể chia hết cho 2,3,5
Nếu r là hợp số không chia hết cho 2,3,5 thì r nhỏ nhất là 7*7 = 49 không thỏa mãn
Vậy r cũng không thể là hợp số
Kết luận: r=1
Vì p chia 42 dư r
=> p = 42k + r ( k thuộc N ; 0<r<42 ; r là hợp số)
=> p = 3.7.2k +r
Vì p là số nguyên tố => r ko chia hết cho 3 , 7 , 2
r nhỏ hơn 42 mà ko chia hết cho 3 , 7 , 2 chỉ có 25
Vậy r = 25
Nhấn đúng cho mk nha!!!!!!
1.
Ta có p = 42k r = 2.3.7.k + r ( k,r \(\in\)N , 0 < r < 42 )
Vì p là số nguyên tố nên r không chia hết cho 2, 3, 7.
Các hợp số nhỏ hơn 42 và không chia hết cho 2 là 9, 15, 21, 25, 27, 33, 35, 39.
Loại đi các số chia hết cho 3, cho 7, chỉ còn 25.
Vậy r = 25.
2) Ta có : 10^5000 + 125=100...00+125=100...00125
Có tổngcác chữ số là 1+1+2+5=9 chia hết cho 9
Do 10^500 chia hết cho 125 và 125 chia hết cho 125
=> 10^5000+125 chia hết cho 5
a,Với p bằng 3 ;p-1 =23(thoả mãn)
8p+1=25(loại)
Với p khác 3 suy ra p không chia hết cho 3; 8p không chia hết cho 3
mà( 8p-1) p (8p+1) là tích của 3 số tự nhiên liên tiếp
8p-1 >3 (p thuộc N) suy ra 8p-1 không chia hết cho 3
8p+1 chia hết cho 3
mà 8p+1>3
8p+1 là hợp số (đpcm)
**** mk nha
2, 42=3.2.7
P=42k+7
Ta có:
Nếu p=2 ;r=40(t/m)
Nếu p=3 ;r=39(loại)
Nếu p>3,do p là nguyên tố nên ko thể là các ước nguyên dương của 42;r hợp số mà nên r=25
mk làm tiếp nha
a) n+8 chia hết cho n+1
(n+1)+7 chia hết cho n+1
=>7 chia hết cho n+1
n+1 thuộc U(7)={1;7}
n+1 1 7
n 0 6
Vậy với n thuộc{0;6} thì n+8 chia hết cho n+1
Tick mình nha bạn!