Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
Ta có: \(2n^2-n-1=2n^2+3n-4n-6+5=n\left(2n+3\right)-2\left(2n+3\right)+5\)
Vì \(n\left(2n+3\right)\)và \(-2\left(2n+3\right)\)chia hết cho \(2n+3\) nên để \(2n^2-n-1\)chia hết cho \(2n+3\) thì \(5\)phải chia hết cho \(2n+3\), tức là \(2n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Với \(2n+3=1\)thì \(n=-1\)
Với \(2n+3=-1\) thì \(n=-2\)
Với \(2n+3=5\)thì \(n=1\)
Với \(2n+3=-5\) thì \(n=-4\)
Vậy, để đa thức \(2n^2-n-1\) chia hết cho đa thức \(2n+3\) thì \(n=\left\{-2;-1;1;-4\right\}\) và \(n\in Z\)
\(2n^2-n+2⋮2n+1\)
\(2n^2+n-2n-1+3⋮2n+1\)
\(n\left(2n+1\right)-\left(2n+1\right)+3⋮2n+1\)
\(\left(2n+1\right)\left(n-1\right)+3⋮2n+1\)
Vì \(\left(2n+1\right)\left(n-1\right)⋮2n+1\)
\(\Rightarrow3⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
\(\Rightarrow n\in\left\{0;1;-1;-2\right\}\)
Vậy.........
Ta có :
\(2n^2-n+2=-n.\left(-2n+1\right)+2\)
Vì -2n + 1 chia hết cho 2n + 1 nên -n.(-2n + 1) cũng chia hết cho 2n + 1
=> 2 chia hết cho 2n + 1
Vì n thuộc Z nên 2n + 1 thuộc {-2;-1;1;2}
=> n thuộc {-1; 0}
ta có: \(\frac{2n^2-n+2}{2n+1}=\frac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}\)=\(n-1+\frac{3}{2n+1}\)
để 2n^2 -n+2 chia hết cho 2n+1 thì 3 phải chia hết cho 2n+1 <=> 2n+1 thuộc các ước nguyên của 3
Ư(3)={-3;-1;1;3)
ta có bảng:
2n+1 | -3 | -1 | 1 | 3 |
n | -2 | -1 | 0 | 1 |
Vậy với x={-2;-1;0;1) thì 2n^2-n+2 chia hết cho 2n+1
Ta có: \(\frac{2n^3+n^2+7n+1}{2n-1}=\frac{\left(2n-1\right)\left(n^2+n+4\right)+5}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)
Để 2n3 + n2 + 7n + 1 chia hết cho 2n - 1 thì \(\frac{5}{2n-1}\in\Rightarrow\Leftarrow5⋮2n-1\Rightarrow2n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta lập bảng giá trị sau:
\(2n-1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(1\) | \(0\) | \(3\) | \(-2\) |
Vậy \(n\in\left\{1;0;3;-2\right\}\)thì 2n3 + n2 + 7n + 1 chia hết cho 2n - 1
\(2n^3+n^2+7n+1\)
\(=\left(2n-1\right)\left(n^2+n+4\right)+5\)
\(\Rightarrow\frac{2n^3+n^2+7n+1}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)
Để vế trái nguyên thì \(2n-1\)là Ư(5).
\(\Rightarrow n=-2,0,1,3\)
\(\left(-1\right)^{2n}\cdot\left(-1\right)^n\cdot\left(-1\right)^{n+1}=\left(-1\right)^{4n+1}=-1\)