Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\) (ĐKXĐ: \(x\ne\pm1\) )
\(=\left(\frac{x+1+2\left(1-x\right)-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\frac{2}{x^2-1}.\frac{x^2-1}{1-2x}=\frac{2}{1-2x}\)
b) Để x nhận giá trị nguyên <=> 2 chia hết cho 1 - 2x
<=> 1-2x thuộc Ư(2) = {1;2;-1;-2}
Nếu 1-2x = 1 thì 2x = 0 => x= 0
Nếu 1-2x = 2 thì 2x = -1 => x = -1/2
Nếu 1-2x = -1 thì 2x = 2 => x =1
Nếu 1-2x = -2 thì 2x = 3 => x = 3/2
Vậy ....
a: \(A=28n^2+27n+5\)
\(=28n^2+20n+7n+5\)
\(=4n\left(7n+5\right)+\left(7n+5\right)\)
\(=\left(4n+1\right)\left(7n+5\right)\)
Nếu n=0 thì \(A=\left(4\cdot0+1\right)\left(7\cdot0+5\right)=1\cdot5=5\) là số nguyên tố
=>Nhận
Khi n>0 thì (4n+1)(7n+5) sẽ là tích của hai số nguyên dương khác 1
=>A=(4n+1)(7n+5) không thể là số nguyên tố
=>Loại
Vậy: n=0
b: \(B=n\left(n^2+n+7\right)-2\left(n^2+n+7\right)\)
\(=\left(n^2+n+7\right)\left(n-2\right)\)
Để B là số nguyên tố thì B>0
=>\(\left(n^2+n+7\right)\left(n-2\right)>0\)
=>n-2>0
=>n>2
\(B=\left(n^2+n+7\right)\left(n-2\right)\)
TH1: n=3
\(B=\left(3^2+3+7\right)\left(3-2\right)=9+3+7=9+10=19\) là số nguyên tố
=>Nhận
TH2: n>3
=>n-2>1 và \(n^2+n+7>1\)
=>\(B=\left(n-2\right)\left(n^2+n+7\right)\) là tích của hai số nguyên dương lớn hơn 1
=>B chắc chắn không thể là số nguyên tố
=>Loại
c: \(C=n\left(n^2+n+7\right)+\left(n^2+n+7\right)\)
\(=\left(n^2+n+7\right)\left(n+1\right)\)
TH1: n=0
=>\(C=\left(0+0+7\right)\left(0+1\right)=7\cdot1=7\) là số nguyên tố
=>Nhận
TH2: n>0
=>n+1>0 và \(n^2+n+7>1\)
=>\(C=\left(n+1\right)\left(n^2+n+7\right)\) là tích của hai số nguyên dương lớn hơn 1
=>C chắc chắn không thể là số nguyên tố
=>Loại
d: \(D=n^2-1=\left(n-1\right)\left(n+1\right)\)
Để D là số nguyên tố thì D>0
=>(n-1)(n+1)>0
TH1: \(\left\{{}\begin{matrix}n-1>0\\n+1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}n>1\\n>-1\end{matrix}\right.\)
=>n>1
TH2: \(\left\{{}\begin{matrix}n-1< 0\\n+1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}n< 1\\n< -1\end{matrix}\right.\)
=>n<-1
Khi n=2 thì \(D=2^2-1=4-1=3\) là số nguyên tố(nhận)
Khi n>2 thì n-1>1 và n+1>3>1
=>D=(n-1)(n+1) là tích của hai số tự nhiên lớn hơn 1
=>D không là số nguyên tố
=>Loại
Khi n=-2 thì \(D=\left(-2\right)^2-1=4-1=3\) là số nguyên tố
=>Nhận
Khi n<-2 thì n-1<-3 và n+1<-1
=>D=(n-1)(n+1)>0 và D bằng tích của hai số nguyên dương lớn hơn 1
=>D không là số nguyên tố
=>Loại
- Nếu n chẵn thì \(\left(n^2+1\right)3n\) chẵn, mà \(6\left(n^2+1\right)\) chẵn nên A chẵn
- Nếu n lẻ thì \(\left(n^2+1\right)3n\) chẵn, mà \(6\left(n^2+1\right)\) chẵn nên A chẵn
Do đó \(\forall n\in N\) thì A chẵn, mà A là số nguyên tố => A = 2
Hay \(\left(n^2+1\right)3n-6\left(n^2+1\right)=2\)
\(\Leftrightarrow3n^3+3n-6n^2-6-2=0\)
\(\Leftrightarrow3n^3-6n^2+3n-8=0\)
Mà \(n\in N\) nên ko tìm đc giá trị của n để A là số nguyên tố.
1) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{x+\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
Để \(P=\dfrac{7}{2}\) thì \(2x+2\sqrt{x}+2-7\sqrt{x}=0\)
\(\Leftrightarrow2x-4\sqrt{x}-\sqrt{x}+2=0\)
\(\Leftrightarrow2\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)
1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2
2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)
Đẳng thức xảy ra khi a = 1
3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)
4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)
Do đó \(a^{2018}+b^{2019}=1+1=2\)
5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)
Em kiểm tra lại đề bài nhé vì:
\(Q=\left(x^3.x.y^n.y-\frac{1}{2}x^3.y^n.y^2\right):\frac{1}{2}x^3y^n-\left(4.5.x^2.x^2.y\right):\left(5x^2y\right)\)
\(=x^3y^n\left(xy-\frac{1}{2}y^2\right):\frac{1}{2}x^3y^n-5x^2y\left(4x^2\right):5x^2y\)
\(=2xy-y^2-4x^2=-\left(x^2-2xy+y^2\right)-3x^2=-\left[\left(x-y\right)^2+3x^2\right]< 0\)Với mọi x, y khác 0
=> Q luôn có gia trị âm với mọi x, y khác 0.
2 , \(7^{1990}=7^{1988}\cdot7^2=\left(7^4\right)^{497}\cdot7^2\)
vì 7^4 có số tận cùng là 1 suy ra (7^4)^497 có số tận cùng là 1
7^2=49 nên có số tận cùng là 9
suy ra \(\left(7^4\right)^{497}\cdot7^2\)có số tận cùng là \(1.9=9\)
vậy 7^1990 có số tận cùng là 9
tìm 2 chữ số tận cùng mà