Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= \(4x^2\)+\(20x\)+\(25\)+\(6x^2\)- \(8x\)- \(x^2\)-\(22\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(4\)-\(1\)
=(\(3x\)+\(2\))2-\(1\)
vì (\(3x\)+\(2\))2 >-0
=>.................-\(1\)>-(-1)
(>- là > hoặc =)
=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)
..................................
1/ \(B=\frac{2x^2-5x+4}{x^2-2x+1}=\frac{2x^2-5x+4}{\left(x-1\right)^2}\)
Đặt \(y=x-1\Rightarrow x=y+1\) thay vào B
\(B=\frac{2\left(y+1\right)^2-5\left(y+1\right)+4}{y^2}=\frac{2y^2-y+1}{y^2}=\frac{1}{y^2}-\frac{1}{y}+2=\left(\frac{1}{y}-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Đẳng thức xảy ra khi y = 2 <=> x = 3
Vậy min B = 7/4 khi x = 3
2/ \(C=\frac{x^2-6x+6}{x^2-2x+1}=\frac{x^2-6x+6}{\left(x-1\right)^2}\)
Tới đây bạn làm tương tự 1/
Ta có: M= 4x^2 - 4x + 1 + x^2 + 4x + 4
= 5x^2 + 5 >= 5
Vậy MinA=5 đạt được khi x=0
\(P=4x^2+4x+m\ge1998\)
\(\Rightarrow\left(2x+1\right)^2+m\ge1999\)
\(\Rightarrow m\ge\frac{1999}{\left(2x+1\right)^2}\)