Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(N=2x^2+4y^2-2x-4y+15=2\left(x^2-x+\dfrac{1}{4}\right)+\left(4y^2-4y+1\right)+\dfrac{27}{2}=2\left(x-\dfrac{1}{2}\right)^2+\left(2y-1\right)^2+\dfrac{27}{2}\ge\dfrac{27}{2}\)
\(minN=\dfrac{27}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)
Bài 2:
\(\Leftrightarrow4x^2+12x+9-25x^2+50x-25=0\)
\(\Leftrightarrow21x^2-62x+16=0\)
\(\Leftrightarrow\left(3x-8\right)\left(7x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=\dfrac{2}{7}\end{matrix}\right.\)
1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4
GTNN = 5
2) tuong tu
a/ \(x+4y=1\Rightarrow x=1-4y\)
\(A=x^2+4y^2=\left(1-4y\right)^2+4y^2=20y^2-8y+1\)
\(A=20\left(y^2-2.\frac{1}{5}y+\frac{1}{25}\right)+\frac{1}{5}=20\left(y-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)
\(\Rightarrow A_{min}=\frac{1}{5}\) khi \(\left\{{}\begin{matrix}y=\frac{1}{5}\\x=1-4y=\frac{1}{5}\end{matrix}\right.\)
b/
\(B=\frac{2x^2+5x+8}{x}=2x+\frac{8}{x}+5\ge2\sqrt{2x.\frac{8}{x}}+5=13\)
\(\Rightarrow B_{min}=13\) khi \(x=2\)
d) D = x4 - 6x2 + 10
D = (X2)2 - 2. x2. 3 + 32 + 1
D = (x2 - 3)2 + 1
(x2 - 3)2 >= 0 với mọi x
(x2 - 3)2 + 1 >=1 với moi5 x
Vậy GTNN của D là 1
A= (4x2+8xy+4y2)+ (x2-2x+1)-1+(y2+2y+1)-1+2019= 4(x+y)2 + (x-1)2+(y+1)2+2017 \(\ge\)2017
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-y\\x=1\\y=-1\end{cases}}\)
Vậy MinA= 2017 khi x=1; y=-1
A=5+ (-x2+2x) +(-4y2-4y)= -(x2-2x+1)+1-(4y2+4y+1)+1+5=-(x-1)2-(2y+1)2 +7 \(\le\)7
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}\)
Vậy Max A bằng 7 khi x=1; y=-1/2
\(F=-x^4+x^2-4y^2+2x-4y+2000.\)
\(=-x^4+2x^2-1-x^2+2x-1-4y^2-4y-1+2003\)
\(=-\left(x^2-1\right)^2-\left(x-1\right)^2-\left(2y+1\right)^2+2003\)
\(=-\left(x-1\right)^2\left(x+1\right)^2-\left(x-1\right)^2-\left(2y+1\right)^2+2003\)
\(\Rightarrow F_{min}=2003\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}}\)
Vậy \(F_{min}=2003\Leftrightarrow x=1;y=-\frac{1}{2}\)