K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2015

xong từ mấy đời rồiNguyễn Vũ Dũng ak

3 tháng 6 2019

ta có:

\(\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|x-4\right|\)

\(=\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|4-x\right|\)

\(\ge\left|x-1+4-x\right|+\left|x-2\right|+\left|y-3\right|\)

\(=3+\left|x-2\right|+\left|y-3\right|\)

\(\ge3\)

Dấu "=" xả ra khi \(\hept{\begin{cases}\left(x-1\right)\left(4-x\right)\ge0\\\left|x-2\right|=0\\\left|y-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le4\cdot\\x=2\left(TM\cdot\right)\\y=3\end{cases}}\)

Vậy \(x=2;y=3\)

(x-1) + (x-2) + (x-3) + (x-4) = 3

(x+x+x+x) - (1+2+3+4) = 3

X x 4 - 10 = 3

X x 4 = 3 + 10

X x 4 = 13

x = 13 : 4

x = \(\frac{13}{4}\)