Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì x+y+z=1
=> (x+y+z)3 =1
=> x3+y3+z3+3(x+y)(y+z)(x+z)=1
=> 1+ 3(x+y)(y+z)(x+z)=1
=> 3(x+y)(y+z)(x+z) =0
=> (x+y)(y+z)(x+z)=0
=> (x+y)=0 hoặc (y+z)=0 hoặc (x+z)=0
với x+y=0 => x=-y
thay x=-y vào x+y+z=1 ta được
z=1
thay x=-y vào x2+y2+z2=1
=> (-y)2+y2+z2=1
=> 2y2+1=1
=> 2y2=0
=> x=y=0
S=x2009+y2010+z2011
S= 0+0+1
S=1
Vậy S=1
Ta có:
\(\left\{{}\begin{matrix}x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\Leftrightarrow x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)=0\)
Theo đề: \(x+y+z=1\Leftrightarrow x;y;z\le1\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\1-y\ge0\\1-z\ge0\end{matrix}\right.\)
\(\Leftrightarrow x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)\ge0\)
Dấu bằng xảy ra khi: \(x^2\left(1-x\right);y^2\left(1-y\right);z^2\left(1-z\right)=0\)
Kết hợp đk đầu bài x+y+z=1 suy ra x;y;z là hoán vị (0;0;1)
\(\Rightarrow S=1\)
x2 + 2y2 + z2 - 2xy - 2y - 4z + 5 = 0
<=> ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + ( z2 - 4z + 4 ) = 0
<=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2 = 0
Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\forall x;y;z\)=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2\(\ge\)0\(\forall\)x ; y ; z
Dấu "=" xảy ra <=>\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\)<=>\(\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)( 1 )
Thay ( 1 ) vào A , ta được :
\(A=\left(1-1\right)^{2020}+\left(1-2\right)^{2020}+\left(2-3\right)^{2020}=0+1+1=2\)
Vậy A = 2
Ta có: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)
Mà \(VT\ge0\left(\forall x,y,z\right)\) nên dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)
Ngu như bò đực lặt.
Bài này mà làm ko ra.......................................a
Nếu a thông minh thì lm giúp e đi.