Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{sin^4x}{m}+\frac{cos^4x}{n}\ge\frac{\left(sin^2x+cos^2x\right)^2}{m+n}=\frac{1}{m+n}\)
Dấu = xảy ra khi \(\frac{sin^2x}{m}=\frac{cos^2x}{n}\)
Thế vào điều kiện đề bài ta có:
\(\frac{sin^4x}{m}+\frac{cos^4x}{n}=\frac{1}{m+n}\)
\(\Leftrightarrow\frac{sin^2x}{m}.\left(sin^2x+cos^2x\right)=\frac{1}{m+n}\)
\(\Leftrightarrow\frac{sin^2x}{m}=\frac{1}{m+n}\left(1\right)\)
Ta cần chứng minh
\(\frac{sin^{2008}x}{m^{1003}}+\frac{cos^{2008}x}{n^{1003}}=\frac{1}{\left(m+n\right)^{1003}}\)
\(\Leftrightarrow\frac{sin^{2006}}{m^{1003}}.\left(sin^2x+cos^2x\right)=\frac{1}{\left(m+n\right)^{1003}}\)
\(\Leftrightarrow\left(\frac{sin^2}{m}\right)^{1003}=\frac{1}{\left(m+n\right)^{1003}}\left(2\right)\)
Từ (1) và (2) ta có điều phải chứng minh là đúng.
\(\tan x=\frac{\sin x}{\cos x}=\frac{3}{5}\Rightarrow\sin x=\frac{3}{5}\cos x\)
\(\Rightarrow N=\frac{\sin x.\cos x}{\sin^2x-\cos^2x}=\frac{\sin x.\cos x}{\left(\sin x-\cos x\right)\left(\sin x+\cos x\right)}\)
\(=\frac{\frac{3}{5}.\cos^2x}{\left(\frac{3}{5}\cos x-\cos x\right)\left(\frac{3}{5}\cos x+\cos x\right)}=\frac{\frac{3}{5}\cos^2x}{\frac{-16}{25}.\cos^2x}=\frac{-15}{16}\)
- có : \(\hept{\begin{cases}\left(a+b\right)^2=1\\\left(a-b\right)^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+2ab+b^2=1\\a^2-2ab+b^2\ge0\end{cases}\Leftrightarrow a^2+b^2\ge\frac{1}{2}}\) nên : \(P=a^2+b^2+\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2}+\frac{4}{a+b}=\frac{1}{2}+4=\frac{9}{2}\)\(P_{min}=\frac{9}{2}\Leftrightarrow a=b=\frac{1}{2}\)
Bài 1: Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a^2+b^2\ge\frac{1}{2}\)
Lại có BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\left(a-b\right)^2\ge0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\left(a+b=1\right)\)
Cộng theo vế 2 BĐT trên có:
\(P=a^2+b^2+\frac{1}{a}+\frac{1}{b}\ge4+\frac{1}{2}=\frac{9}{2}\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
Bài 2: Áp dụng BĐT AM-GM ta có:
\(VT^2=\left(x-1\right)+\left(3-x\right)+2\sqrt{\left(x-1\right)\left(3-x\right)}\)
\(=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\)
\(\le2+\left(x-1\right)+\left(3-x\right)=4\)
\(\Rightarrow VT^2\le4\Rightarrow VT\le2\left(1\right)\). Lại có:
\(VP=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\left(2\right)\)
Từ (1);(2) xảy ra khi
\(VT=VP=2\Rightarrow\left(x-2\right)^2+2=2\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\) (thỏa)
Vậy x=2 là nghiệm của pt
Ta có:
\(sin^2a+cos^2a=1\Leftrightarrow sin^2a+\left(\frac{1}{3}\right)^2=1\Leftrightarrow sin^2a=\frac{8}{9}\Rightarrow sina=\frac{2\sqrt{2}}{3}.\)
\(B=\frac{sin\alpha-3cosa}{sina+2cosa}=\frac{\frac{2\sqrt{2}}{3}-3.\frac{1}{3}}{\frac{2\sqrt{2}}{3}+2.\frac{1}{3}}=\frac{7-5\sqrt{2}}{2}\)
1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)
=1
2: \(sin^4x-cos^4x\)
\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)
\(=1-2\cdot cos^2x\)