Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)
\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)
b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)
\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)
\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)
c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\le-1\)
\(\Rightarrow V\ge\frac{1}{-1}=-1\)
Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)
\(=-\left(4x^2-8x+4\right)-1\)
\(=-\left(2x-2\right)^2-1\le-1\)
\(\Rightarrow X\ge\frac{2}{-1}=-2\)
Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
1. D = 3( x2 - 2x.1/3 + 1/9) -1/3 +1
GTNN D = 5/6
dài quá, nản quá
a) \(A=x^2-6x+11\)
\(\Rightarrow A=x^2-6x+9+2\)
\(\Rightarrow A=\left(x-3\right)^2+2\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = 3
Vậy \(MIN\) \(A=2\Leftrightarrow x=3\)
b) \(B=2x^2+10x-1\)
\(\Rightarrow B=2\left(x^2+5\right)-1\)
\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{25}{2}-1\)
\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\)
Ta có: \(2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)\ge0\forall x\)
\(\Rightarrow2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\ge-\dfrac{23}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{-5}{2}\)
Vậy \(MIN\) \(B=\dfrac{-23}{2}\Leftrightarrow x=\dfrac{-5}{2}\)
c) \(C=5x-x^2\)
\(\Rightarrow C=-\left(x^2-5x\right)\)
\(\Rightarrow C=-\left(x^2-2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(\Rightarrow C=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)
Ta có: \(-\left(x-\dfrac{5}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)
Vậy \(MAX\) \(C=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)
a)\(A=4x^2+4x+11\)
\(=4x^2+4x+1+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu = khi \(x=\frac{-1}{2}\)
Vậy MinA=10 khi \(x=\frac{-1}{2}\)
b)\(B=3x^2-6x+1\)
\(=3x^2-6x+3-2\)
\(=3\left(x^2-2x+1\right)-2\)
\(=3\left(x-1\right)^2-2\ge-2\)
Dấu = khi \(x=1\)
Vậy MinB=-2 khi \(x=1\)
c)\(C=x^2-2x+y^2-4y+6\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
mk gợi ý, phần còn lại tự làm
a) \(A=x^2+2x+5=\left(x+1\right)^2+4\ge4\)
b) \(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)
c) \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
d) \(D=x^2-2x+y^2-4y+7=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
e) \(E=x^2-4xy+5y^2+10x-22y+28=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
a) A = x2 + 2x + 5
= x2 + 2x + 1 + 4
= ( x + 1 )2 + 4
Nhận xét :
( x + 1 )2 > 0 với mọi x
=> ( x + 1 )2 + 4 > 4
=> A > 4
=> A min = 4
Dấu " = " xảy ra khi : ( x + 1 )2 = 0
=> x + 1 = 0
=> x = - 1
Vậy A min = 4 khi x = - 1
b) B = 4x2 + 4x + 11
= ( 2x )2 + 4x + 1 + 10
= ( 2x + 1 )2 + 10
Nhận xét :
( 2x + 1 )2 > 0 với mọi x
=> ( 2x + 1 )2 + 10 > 10
=> B > 10
=> B min = 10
Dấu " = " xảy ra khi : ( 2x + 1 )2 = 0
=> 2x + 1 = 0
=> x = \(\frac{-1}{2}\)
Vậy Bmin = 10 khi x = \(\frac{-1}{2}\)
c) C = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )
= [ ( x - 1 ) ( x + 6 ) ] [ ( x + 2 ) ( x + 3 ) ]
= ( x2 + 5x - 6 ) ( x2 + 5x + 6 )
= ( x2 + 5x ) 2 - 62
= ( x2 + 5x )2 - 36
Nhận xét :
( x2 + 5x )2 > 0 với mọi x
=> ( x2 + 5x )2 - 36 > - 36
=> C > - 36
=> C min = - 36
Dấu " = " xảy ra khi : ( x2 + 5x )2 = 0
=> x2 + 5x = 0
=> x ( x + 5 ) = 0
=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy C min = - 36 khi x = 0 hoặc x = - 5
d) D = x2 - 2x + y2 - 4y + 7
= ( x2 - 2x + 1 ) + ( y2 - 4x + 4 ) + 2
= ( x - 1 )2 + ( y - 2 )2 + 2
Nhận xét :
( x - 1 )2 > 0 với mọi x
( y - 2 )2 > 0 với mọi y
=> ( x - 1 )2 + ( y - 2 )2 > 0
=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2
=> D > 2
=> D min = 2
Dấu " = " xảy ra khi : \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy D min = 2 khi x = 1 và y = 2
\(A=x^2+10x-37\)
\(=\left(x+5\right)^2-62\)
Có \(\left(x+5\right)^2\ge0\forall x\in R\)
\(\Rightarrow\left(x+5\right)^2-62\ge-62\forall x\in R\)
Dấu = xảy ra \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)
Vậy A đạt GTNN là -62 tại x=-5
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
\(b,B=4x^2+4x-2\)
\(B=4x^2+4x+1-3\)
\(B=\left(4x^2+4x+1\right)-3\)
\(B=\left(2x+1\right)^2-3\)
Ta có :
\(\left(2x+1\right)^2\ge0\)với mọi x
\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)
\(\Leftrightarrow B\ge-3\)
\(\Rightarrow B_{min}=-3\)
\(\Leftrightarrow x=-\frac{1}{2}\)