K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

\(1.\text{/}A=\frac{2x+1}{x^2+2}\Leftrightarrow Ax^2+2A=2x+1\)

\(\Leftrightarrow Ax^2-2x+\left(2A-1\right)=0\)(1)

Để pt 1) có nghiệm \(\Leftrightarrow4-4A\left(2A-1\right)=4-8A^2+4A=-4\left(A-1\right)\left(2A+1\right)\ge0\)

\(\Leftrightarrow-\frac{1}{2}\le A\le1\)

2. \(ab=7\left(a+b\right)\Leftrightarrow ab-7a-7b=0\)

\(\Leftrightarrow a\left(b-7\right)-7b+49=49\)

\(\Leftrightarrow a\left(b-7\right)-7\left(b-7\right)=49\)

\(\Leftrightarrow\left(a-7\right)\left(b-7\right)=49\) đến đây tự làm tiếp

18 tháng 8 2023

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}=4\left(1\right)\)

Theo Bất đẳng thức Cauchy cho các cặp số \(\left(x^2;\dfrac{1}{x^2}\right);\left(x^2;\dfrac{y^2}{4}\right)\)

\(\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge2.\dfrac{1}{2}xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge xy\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}\ge2+xy\)

\(\Leftrightarrow4\ge2+xy\)

\(\Leftrightarrow xy\le2\left(x;y\inℤ\right)\)

\(\Leftrightarrow Max\left(xy\right)=2\)

Dấu "=" xảy ra khi

\(xy\in\left\{-1;1;-2;2\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-2\right);\left(1;2\right);\left(-2;-1\right);\left(2;1\right)\right\}\) thỏa mãn đề bài

17 tháng 9 2023

hình như dấu "=" xảy ra khi x^2 = 1/x^2 với x^2 = y^2/4 mà bạn nhỉ

21 tháng 3 2020

Ta có

\(A=\frac{x^2+2x-1}{x^2-2x+3}\left(ĐKXĐ:\forall x\inℝ\right)\)

\(\Leftrightarrow A.\left(x^2-2x+3\right)=x^2+2x-1\)

\(\Leftrightarrow\left(A-1\right).x^2-2\left(A+1\right)x+3A+1=0\left(1\right)\)

Do \(\forall x\inℝ\)ta luôn có một giá trị A tương ứng nên phương trình (1) luôn có nghiệm

\(\Rightarrow\Delta^'_x\ge0\)

\(\Leftrightarrow\left(A+1\right)^2-\left(3A+1\right)\left(A-1\right)\ge0\)

\(\Leftrightarrow-2A^2+4A+2\ge0\)

\(\Leftrightarrow1-\sqrt{2}\le A\le1+\sqrt{2}\)

Nếu \(A=1-\sqrt{2}\)thì thay vào trên ta được \(x=1-\sqrt{2}\)

Nếu \(A=1+\sqrt{2}\)thì thay vào trên ta được 

Vậy \(\hept{\begin{cases}MinA=1-\sqrt{2}\Leftrightarrow x=1-\sqrt{2}\\MaxA=1+\sqrt{2}\Leftrightarrow x=1+\sqrt{2}\end{cases}}\)

27 tháng 11 2017

GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2

GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4

4 tháng 8 2017

Nhân chéo y lên trừ đi rồi dùng denta là xong,dễ lắm

4 tháng 8 2017

y>0 với mọi x suy ra 2x^2y-xy+4y=x^2+2x+3>>>(2y-1)x^2-(y-2)x+(4y-3)=0(1)

Xét 2y-1=0 suy ra y=1/2 suy ra x=2/3(1)

Xét 2y-1 khác 0 pt trơ thành pt bậc 2 ẩn x suy ra delta=(y-2)^2-4(4y-3)(2y-1)>=0

suy ra 31y^2-36y+8<=0 rồi tìm được khoảng của y rồi so sánh với (1) là y=1/2 ta sẽ có GTLN và GTNN của y

NV
8 tháng 1 2023

\(2x^2+3y^2+4z^2=21\Rightarrow2x^2\le21-3.1^2-4.1^2=14\)

\(\Rightarrow x\le\sqrt{7}\)

Tương tự ta có \(y\le\sqrt{5}\) và \(z\le2\)

Do đó:

\(\left(z-1\right)\left(z-2\right)\le0\Rightarrow z^2+2\le3z\Rightarrow4z^2+8\le12z\) (1)

\(\left(x-1\right)\left(2x-10\right)\le0\Rightarrow2x^2+10\le12x\) (2)

\(\left(y-1\right)\left(3y-9\right)\le0\Leftrightarrow3y^2+9\le12y\) (3)

Cộng vế (1);(2) và (3):

\(\Rightarrow12\left(x+y+z\right)\ge2x^2+3y^2+4z^2+27\ge48\)

\(\Rightarrow x+y+z\ge4\)

\(M_{min}=4\) khi \(\left(x;y;z\right)=\left(1;1;2\right)\)

NV
8 tháng 1 2023

Theo chứng minh ban đầu ta có: \(z\le2\Rightarrow z-2\le0\)

Theo giả thiết \(z\ge1\Rightarrow z-1\ge0\)

\(\Rightarrow\left(z-1\right)\left(z-2\right)\le0\)

Tương tự: \(x< \sqrt{5}< 5\Rightarrow x-5< 0\Rightarrow2x-10< 0\)

\(\Rightarrow\left(x-1\right)\left(2x-10\right)\le0\)

y cũng như vậy

 

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm