Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = |x + 1| + |y - 2| ≥ |x + 1 + y - 2|
= |x + y - 1|
= |2 - 1|
= 1
Vậy giá trị nhỏ nhất của A là 1
\(A=\left|x+1\right|+\left|y-2\right|\)
\(\Rightarrow A\le x+1+y-2\)
\(A\le x+y-1\)
\(A\le4\)
Vậy giá trị nhỏ nhất biểu thức A là 4.
\(A=\left|x+2\right|+\left|x+3\right|+\left|x-4\right|+\left|x-5\right|\)
ta có :
\(\left|x+2\right|\ge0\)
\(\left|x+3\right|\ge0\)
\(\left|x-4\right|\ge0\)
\(\left|x-5\right|\ge0\)
nên :
\(\left|x+2\right|+\left|x+3\right|+\left|x-4\right|+\left|x-5\right|\ge0\)
dấu "=" xảy ra khi :
\(\left|x+2\right|+\left|x+3\right|+\left|x-4\right|+\left|x-5\right|=0\)
\(\Rightarrow x+2+x+3+x-4+x-5=0\)
\(\Rightarrow4x-3=0\)
\(\Rightarrow4x-3\)
\(\Rightarrow x=\frac{3}{4}\)
vậy Amin = 0 khi x = 3/4
phần b bn làm tương tự
\(A=\left|x-1\right|+\left|x-2\right|\)
- x<1: \(A=1-x+2-x=3-2x>3-2\cdot1=1\)(1)
- 1<= x < 2: \(A=x-1+2-x=1\)(2)
- x>=2: \(A=x-1+x-2=2x-3\ge2\cdot2-3=1\). Dấu "=" khi x = 2. (3)
Từ (1); (2); (3) => GTNN của A bằng 1 khi \(1\le x\le2\)
Ta có Ix-1I \(\ge\) 0 và Ix-2I \(\ge\) 0
=> A= Ix-1I + Ix-2I \(\ge\) 0
=> Giá trị nhỏ nhất của A=0 khi x-1=0 => x=1