Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 17.Cho phân thức: A=2x-1/x^2-x
a. Tìm điều kiện để giá trị của phân thức được xác định.
x^2 - x # 0
<=> x ( x - 1 ) # 0
<=> x # 0
<=> x -1 # 0 => x # 1
b. Tính giá trị của phân thức khi x = 0 và khi x = 3.
Nếu x = 0 thì phân thức ko xác định
Nếu x = 3 thì
2.3 - 1 / 3^2 - 3
= 5/6
Lời giải:
a.
$A=(x+6)^2-(x+2)^2+2[(x-5)^2-(x-3)^2]$
$=(x+6-x-2)(x+6+x+2)+2[(x-5-x+3)(x-5+x-3)]$
$=4(2x+8)+2(-2)(2x-8)$
$=4(2x+8)-4(2x-8)=4[(2x+8)-(2x-8)]=4.16=64$ không phụ thuộc vào $x$
b.
$B=(x^3-2^3)-(x^3+2^3)=-16$ không phụ thuộc vào $x$
c.
$C=x^4+2x^2-[(x^2+3)^2-(2x)^2]$
$=x^4+2x^2-(x^4+6x^2-4x^2)$
$=x^4+2x^2-(x^4+2x^2)=0$ không phụ thuộc vào $x$
a) Ta có: \(A=\left(x+6\right)^2+2\left(x-5\right)^2-\left(x+2\right)^2-2\left(x-3\right)^2\)
\(=x^2+12x+36+2\left(x^2-10x+25\right)-\left(x^2+4x+4\right)-2\left(x^2-6x+9\right)\)
\(=x^2+12x+36+2x^2-20x+50-x^2-4x-4-2x^2+12x-18\)
\(=34\)
b) Ta có: \(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=x^3-8-x^3-8\)
=-16
c) Ta có: \(C=x^4+2x^2-\left(x^2-2x+3\right)\left(x^2+2x+3\right)\)
\(=x^4+2x^2-\left[\left(x^2+3\right)^2-4x^2\right]\)
\(=x^4+2x^2-\left(x^4+6x^2+9\right)+4x^2\)
\(=-9\)
a) \(\left(3n-1\right)^2-4=\left(3n-1-2\right)\left(3n-1+2\right)\)
\(=\left(3n-3\right)\left(3n+1\right)=3\left(n-1\right)\left(3n+1\right)⋮3\forall n\in N\)
b) \(A=x^2+2x+5=\left(x^2+2x+1\right)+4\)
\(=\left(x+1\right)^2+4\ge4\)
\(minA=4\Leftrightarrow x=-1\)
1)
Ta có : \(5-2x< 3+x\)
\(\Leftrightarrow-2x-x< 3-5\)
\(\Leftrightarrow-3x< -2\)
\(\Leftrightarrow x>\frac{2}{3}\)
Vậy bất phương trình có tập nghiệm \(\left\{x/x>\frac{2}{3}\right\}\)
2)
Ta có : \(a^2+b^2+2-2\left(a+b\right)\)
\(=a^2+b^2+2-2a-2b\)
\(=\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\)
\(=\left(a-1\right)^2+\left(b-1\right)^2\)
Mà : \(\left(a-1\right)^2\ge0\forall a\)
\(\left(b-1\right)^2\ge0\forall b\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\forall a;b\) ( luôn đúng )
\(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\left(đpcm\right)\)
Vậy \(a^2+b^2+2\ge2\left(a+b\right)\)