K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1, 2mx−1x−1=m−2 (x≠1)(x≠1)

⇔ 2mx−1=(m−2)(x−1)

⇔ 2mx−1=x(m−2)−m+2

⇔ x.(m+2)=−m+3x.(m+2)=−m+3

Nếu m+2=0m+2=0 hay m=−2m=−2 thì 0x=5

⇒ PT vô nghiệm

Nếu m+2≠0 hay m≠−2 thì x=3mm+2

2, 2x2x²−5x+3+9x2x²−x−3=6

⇔ 2x(3x−2).(x−1)+9x(3x−2).(x+1)=6

⇔ 2x(x+1)(3x−2).(x−1)(x+1)+9x(x−1)(3x−2).(x+1)(x−1)=6

⇒ 2x(x+1)+9x(x−1)=6(3x−2)(x+1)(x−1)

⇔ 11x²−7x=18x³−12x²−18x+12

⇔ 18x³−13x²−11x+12=0

a: Khi m=1 thì pt sẽ là: x+x-3=6x-6

=>6x-6=2x-3

=>4x=3

=>x=3/4

b: m^2x+m(x-3)=6(x-1)

=>x(m^2+m-6)=-6+3m=3m-6

=>x(m+3)(m-2)=3(m-2)

Để (1) có nghiệm duy nhất thì (m+3)(m-2)<>0

=>m<>-3 và m<>2

=>x=3/(m+3)

\(A=\dfrac{\left(\dfrac{3}{m+3}\right)^2+\dfrac{6}{m+3}+3}{\left(\dfrac{3}{m+3}\right)^2+2}\)

\(=\dfrac{9+6m+18+3m^2+18m+27}{\left(m+3\right)^2}:\dfrac{9+2m^2+12m+18}{\left(m+3\right)^2}\)

\(=\dfrac{3m^2+24m+54}{2m^2+12m+27}>=\dfrac{1}{2}\)

Dấu = xảy ra khi 6m^2+48m+108=2m^2+12m+27

=>4m^2+36m+81=0

=>m=-9/2

28 tháng 3 2022

a) khi m = 1 ta có pt
x + 1.(x-3) = 6.(x-1) 
=> x + x - 3 = 6x - 6
=> -4x = -3
=> x = 3/4
vậy với m=1 pt có no x =3/4

a: Phương trình có dạng ax+b=0 khi a<>0 được gọi là phương trình bậc nhất một ẩn

Phương trình 2x-5=2x+3 là phương trình bậc nhất một ẩn

c: Hai phương trình tương đương là hai phương trình có cùng tập nghiệm

4 tháng 5 2018

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow2\left(m-1\right)x=2\)

\(\Leftrightarrow x=\frac{2}{m-1}\)

Vì \(2>0\)

\(\Rightarrow m-1>0\)

\(\Rightarrow m>1\)