\(\dfrac{x}{x^2+1}=y^2-4y+5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 2 2021

Ta có: \(\dfrac{x}{x^2+1}-\dfrac{1}{2}=\dfrac{-\left(x-1\right)^2}{x^2+1}\le0\)

\(\Rightarrow\dfrac{x}{x^2+1}\le\dfrac{1}{2}\) ;\(\forall x\)

Mặt khác: \(y^2-4y+5=\left(y-2\right)^2+1\ge1\)

\(\Rightarrow y^2-4y+5>\dfrac{x}{x^2+1}\) ; \(\forall x;y\)

\(\Rightarrow\) Không tồn tại x, y thỏa mãn yêu cầu đề bài

28 tháng 12 2019

Đặt \(\left(x,y,z\right)=\left(a+1,b+1,c+1\right)\Rightarrow a,b,c\ge0\)

Ta có : 

\(3x^2+4y^2+5z^2=52\Leftrightarrow3\left(a+1\right)^2+4\left(b+1\right)^2+5\left(c+1\right)^2=52\)

\(\Leftrightarrow3a^2+4b^2+5c^2+6a+8b+10c=40\)

\(\Leftrightarrow5\left(a+b+c\right)^2+10\left(a+b+c\right)=40+2a^2+b^2+10\left(ab+bc+ac\right)+4a+2b\)

\(\Rightarrow5\left(a+b+c\right)^2+10\left(a+b+c\right)\ge40\Leftrightarrow a+b+c\ge2\)

Do đó \(x+y+z=a+b+c+3\ge5\)

Vậy \(F_{min}=5\Leftrightarrow x=y=1;z=3\)

Chúc bạn học tốt !!!

28 tháng 12 2019

Bớt copppy đưa link tử tế cái :)))):

Cho các số thực x y z ge1 thỏa mãn 3x 2 4y 2 5z 2 52 Tìm ...

Tìm GTNN của F=x+y+z biết 3x^2+4y^2+5z^2-52 - H7.net

Search mạng đầy vler :333

18 tháng 10 2021

\(2\left(2x+y^2-2y\sqrt{x-1}+2\sqrt{x-1}-4y+3\right)=0\)

Ta có:

\(VT=\left(y-1\right)^2-4\sqrt{x-1}\left(y-1\right)+4\left(x-1\right)+y^2-6y+9\)

\(=\left[\left(y-1\right)-2\sqrt{x-1}\right]^2+\left(y-3\right)^2\ge0=VP\)

Dấu = xảy ra khi:

\(\hept{\begin{cases}y-3=0\\y-1=2\sqrt{x-1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=3\\x=2\end{cases}}\)

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

9 tháng 12 2016

Áp dụng BĐT Bunhiacopxki : 

\(\left(x.\sqrt{1-y^2}+\sqrt{1-x^2}.y\right)^2\le\left(x^2+1-x^2\right).\left(y^2+1-y^2\right)\)

\(\Rightarrow x\sqrt{1-y^2}+y\sqrt{1-x^2}\le1\Rightarrow x^2+y^2\le1\)

Lại áp dụng BĐT Bunhiacopxki : \(\left(3x+4y\right)^2\le\left(3^2+4^2\right)\left(x^2+y^2\right)\le\left(3^2+4^2\right)\)

\(\Rightarrow\left(3x+4y\right)^2\le25\Rightarrow3x+4y\le5\)

5 tháng 12 2016

A (min) khi

\(\frac{4}{x}=\frac{1}{4y}=>x=16y\)

\(y=\frac{5}{4.17};x=\frac{5.16}{4.17}\)\(x.y=\frac{5.5}{17.17}\)

A(min)=2.\(2\sqrt{\frac{1}{xy}}=2.\frac{17}{5}=\frac{34}{5}\)

7 tháng 12 2016

Bạn có thể giải thích rõ hơn cho mình dc ko?? Mình ko hiểu cho lắm!

26 tháng 3 2022

\(A=x^2+3xy+4y^2\ge4y^2+3y+1\)

\(=\left(4y^2+\frac{2.2y.3}{4}+\frac{9}{16}\right)+\frac{7}{16}\)

\(=\left(2y+\frac{3}{4}\right)^2+\frac{7}{16}\ge\frac{7}{16}\)

24 tháng 4 2020

Theo đề bài: 

 \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(1)

Lại có: \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(\sqrt{x^2+\sqrt{2020}}-x\right)=\sqrt{2020}\)(2)

Và \(\left(\sqrt{y^2+\sqrt{2020}}-y\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(3)

Từ (1) và (3) => \(x+\sqrt{x^2+\sqrt{2020}}=\sqrt{y^2+\sqrt{2020}}-y\)

<=> \(x+y=-\sqrt{x^2+\sqrt{2020}}+\sqrt{y^2+\sqrt{2020}}\)(4)

Từ (1) và (2) => \(\sqrt{x^2+\sqrt{2020}}-x=\sqrt{y^2+\sqrt{2020}}+y\)

<=> \(x+y=\sqrt{x^2+\sqrt{2020}}-\sqrt{y^2+\sqrt{2020}}\)(5) 

Từ (4) ( 5 ) => x + y = - ( x + y ) <=> x = - y 

=> \(M=9x^4+7x^4-12x^2+4x^2+5\)

\(=16x^4-8x^2+5=\left(4x^2-1\right)^2+4\ge4\)

Dấu "=" xảy ra <=> \(4x^2-1=0\)<=> \(x=\pm\frac{1}{2}\)

Với x = 1/2 => (x; y) = ( 1/2; -1/2) 

Với x = -1/2 => ( x; y ) = ( -1/2; 1/2) 

Vậy min M = 4 đạt tại ....