K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2015

http://d.violet.vn//uploads/resources/601/2228122/preview.swf

12 tháng 2 2018

Bài 1:

                    \(x^2-8x+y^2+6y+25=0\)

\(\Leftrightarrow\)\(\left(x^2-8x+16\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\)\(\left(x-4\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-4=0\\y+3=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=4\\y=-3\end{cases}}\)

Vậy...

Bài 2: 

Phương trình có nghiệm duy nhất là    x = -2/3    nên ta có:

          \(\left(4+a\right).\frac{-2}{3}=a-2\)

\(\Leftrightarrow\)\(-\frac{8}{3}-\frac{2}{3}a=a-2\)

\(\Leftrightarrow\)\(a+\frac{2}{3}a=2-\frac{8}{3}\)

\(\Leftrightarrow\)\(\frac{5}{3}a=-\frac{2}{3}\)

\(\Leftrightarrow\)\(a=-\frac{2}{5}\)

27 tháng 2 2018

Bài 3:

\(A=a^4-2a^3+3a^2-4a+5\)

\(=a^3\left(a-1\right)-a^2\left(a-1\right)+2a\left(a-1\right)-2\left(a-1\right)+3\)

\(=\left(a-1\right)\left(a^3-a^2+2a-2\right)+3\)

\(=\left(a-1\right)\left[a^2\left(a-1\right)+2\left(a-1\right)\right]+3\)

\(=\left(a-1\right)^2\left(a^2+2\right)+3\ge3\)

\(\text{Vậy Min A=3. Dấu "=" xảy ra khi và chỉ khi }a-1=0\Leftrightarrow a=1\)

Bài 4:

\(xy-3x+2y=13\)

\(\Leftrightarrow x\left(y-3\right)+2\left(y-3\right)=7\)

\(\Leftrightarrow\left(x+2\right)\left(y-3\right)=7=1.7=7.1=-1.-7=-7.-1\)

x+2-7-117
y-3-1-771
x-9-3-15
y2-4104

Vậy...

Bài 5:

\(xy-x-3y=2\)

\(\Leftrightarrow x\left(y-1\right)-3\left(y-1\right)=5\)

\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=5=1.5=5.1=-1.-5=-5.-1\)

x-3-5-115
y-1-1-551
x-2248
y0-462

Vậy....

21 tháng 6 2016

P/s: Bn ấy k đc 5 k đó vì bn ấy có 5 nick

Bài 1:

\(M=x^4-x^3-x^3+x^2+2x^2-2x+2\)

\(=x^2\left(x^2-x\right)-x\left(x^2-x\right)+2\left(x^2-x\right)+2\)

\(=3x^2-3x+6+2\)

\(=3x^2-3x+8\)

\(=3\left(x^2-x\right)+8=3\cdot3+8=17\)

1 tháng 8 2017

b)

\(\left(x+2\right)^4=y^3+x^4\)

\(\Leftrightarrow y^3=\left(x+2\right)^4-x^4=x^4+8x^3+24x^2+32x+16-x^4\)

\(\Leftrightarrow y^3=8x^3+24x^2+32x+16\)

+ Vì \(24x^2+32x+16=4\left(6x^2+8x+4\right)=4\left[2x^2+4\left(x+1\right)^2\right]>0\forall x\)

\(\Rightarrow y^3>8x^3=\left(2x\right)^3\)              (1)

+ Xét \(M=\left(2x+3\right)^3-y^3=8x^3+36x^2+54x+27-8x^3-24x^2-32x-16\)

\(\Rightarrow M=12x^2+22x+11=x^2+11\left(x+1\right)^2>0\forall x\)                 (2)

Từ (1) và (2) \(\Rightarrow\left(2x\right)^3< y^3< \left(2x+3\right)^3\)

\(\Rightarrow\orbr{\begin{cases}y=2x+1\\y=2x+2\end{cases}}\)

* Với \(y=2x+1\), thay vào biểu thức ta có :

\(\left(2x+1\right)^3=8x^3+24x^2+32x+16\)

\(\Leftrightarrow8x^3+12x^2+6x+1=8x^3+24x^2+32x+16\)

\(\Leftrightarrow12x^2+26x+15=0\)

\(\Leftrightarrow2x\left(6x+13\right)=-15\)

Vì x nguyên nên \(2x\left(6x+13\right)⋮2\), mà -15 ko chia hết cho 2 nên PT vô nghiệm 

* Với \(y=2x+2\), ta có :

\(\left(2x+2\right)^3=8x^3+24x^2+32x+16\)

\(\Leftrightarrow8x^3+24x^2+24x+8=8x^3+24x^2+32x+16\)

\(\Leftrightarrow8x+8=0\)

\(\Leftrightarrow x=-1\)

     Suy ra : \(y=2.\left(-1\right)+2=0\)

                     Vây PT có nghiệm \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

1 tháng 8 2017

a)

\(x^2+xy+y^2=x^2y^2\)

\(\Leftrightarrow x^2+2xy+y^2=x^2y^2+xy\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

Suy ra : \(\orbr{\begin{cases}xy=0\\xy+1=0\end{cases}}\)

+ Với  \(xy=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)

Thay vào biểu thức  ta đc \(x=y=0\)

+ Với \(xy+1=0\Leftrightarrow xy=-1\)

Vì x, y nguyên nên \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(-1;1\right)\right\}\)

Thay vao biểu thức ta thấy thỏa mãn !

                 Vậy \(\left(x;y\right)\in\left\{\left(0;0\right);\left(1;-1\right);\left(-1;1\right)\right\}\)